采矿废弃物间接碳化固碳技术经济分析

IF 3.2 Q2 CHEMISTRY, PHYSICAL
Energy advances Pub Date : 2025-02-05 DOI:10.1039/D4YA00567H
Katherine Vaz Gomes, Caleb M. Woodall, Hélène Pilorgé, Peter Psarras and Jennifer Wilcox
{"title":"采矿废弃物间接碳化固碳技术经济分析","authors":"Katherine Vaz Gomes, Caleb M. Woodall, Hélène Pilorgé, Peter Psarras and Jennifer Wilcox","doi":"10.1039/D4YA00567H","DOIUrl":null,"url":null,"abstract":"<p >Carbon mineralization offers the potential to durably store gigatonne-scale CO<small><sub>2</sub></small> emissions, with mining waste representing an especially promising feedstock due to its relatively small particle size, global availability, and opportunities for decarbonizing the mining sector. Despite significant research into the scale and potential of this technology, there remains a lack of techno-economic analyses (TEAs) that comprehensively capture the full-process costs of indirect carbonation using a pH-swing approach. This approach enables both CO<small><sub>2</sub></small> storage in carbonates, potentially usable to decarbonize concrete, and the extraction of critical minerals, incorporating the costs and revenues of coupling these processes. To address this gap, we developed a Class IV TEA tailored to estimate the costs and life cycle assessment (LCA) of combining critical mineral extraction and carbon mineralization in mining wastes. The model evaluates scenarios for various waste types (<em>i.e.</em>., legacy asbestos waste, aggregate quarry tailings, platinum group metal tailings) under different extraction conditions (acid type, temperature, strength) and carbonation parameters. Additionally, sensitivity analyses explore the effects of reactor design, internal acid–base recycling, and other factors on process costs and carbon efficiency. Our findings show carbon efficiencies of up to 95%, depending on process design. Acid–base recycling is critical for cost-effective and carbon-negative operations: without recycling, process costs exceed $3000 per tCO<small><sub>2</sub></small> and yield a carbon efficiency of −280%, while internal acid regeneration reduces costs to $500–800 per tCO<small><sub>2</sub></small> with carbon efficiencies ranging from 41–72%. Process costs vary by waste type and process conditions, ranging from $800–1800 per tCO<small><sub>2</sub></small> (assuming 10% reagent makeup), with the carbonate precipitation step contributing 34–78% of total costs. The TEA highlights that acid–base recycling is essential for scaling the pH-swing process on mine tailings and should be a research priority to enable gigatonne-scale CO<small><sub>2</sub></small> storage by mid-century. Additionally, selectively recovering critical minerals in wastes where magnesium and calcium are not exclusively leached could significantly offset capital costs.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 3","pages":" 435-446"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00567h?page=search","citationCount":"0","resultStr":"{\"title\":\"Techno-economic analysis of indirect carbonation processes for carbon sequestration using mining waste†\",\"authors\":\"Katherine Vaz Gomes, Caleb M. Woodall, Hélène Pilorgé, Peter Psarras and Jennifer Wilcox\",\"doi\":\"10.1039/D4YA00567H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Carbon mineralization offers the potential to durably store gigatonne-scale CO<small><sub>2</sub></small> emissions, with mining waste representing an especially promising feedstock due to its relatively small particle size, global availability, and opportunities for decarbonizing the mining sector. Despite significant research into the scale and potential of this technology, there remains a lack of techno-economic analyses (TEAs) that comprehensively capture the full-process costs of indirect carbonation using a pH-swing approach. This approach enables both CO<small><sub>2</sub></small> storage in carbonates, potentially usable to decarbonize concrete, and the extraction of critical minerals, incorporating the costs and revenues of coupling these processes. To address this gap, we developed a Class IV TEA tailored to estimate the costs and life cycle assessment (LCA) of combining critical mineral extraction and carbon mineralization in mining wastes. The model evaluates scenarios for various waste types (<em>i.e.</em>., legacy asbestos waste, aggregate quarry tailings, platinum group metal tailings) under different extraction conditions (acid type, temperature, strength) and carbonation parameters. Additionally, sensitivity analyses explore the effects of reactor design, internal acid–base recycling, and other factors on process costs and carbon efficiency. Our findings show carbon efficiencies of up to 95%, depending on process design. Acid–base recycling is critical for cost-effective and carbon-negative operations: without recycling, process costs exceed $3000 per tCO<small><sub>2</sub></small> and yield a carbon efficiency of −280%, while internal acid regeneration reduces costs to $500–800 per tCO<small><sub>2</sub></small> with carbon efficiencies ranging from 41–72%. Process costs vary by waste type and process conditions, ranging from $800–1800 per tCO<small><sub>2</sub></small> (assuming 10% reagent makeup), with the carbonate precipitation step contributing 34–78% of total costs. The TEA highlights that acid–base recycling is essential for scaling the pH-swing process on mine tailings and should be a research priority to enable gigatonne-scale CO<small><sub>2</sub></small> storage by mid-century. Additionally, selectively recovering critical minerals in wastes where magnesium and calcium are not exclusively leached could significantly offset capital costs.</p>\",\"PeriodicalId\":72913,\"journal\":{\"name\":\"Energy advances\",\"volume\":\" 3\",\"pages\":\" 435-446\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00567h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d4ya00567h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d4ya00567h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

碳矿化提供了持久储存十亿吨级二氧化碳排放的潜力,由于其相对较小的粒度、全球可用性和采矿业脱碳的机会,采矿废物代表了一个特别有前途的原料。尽管对该技术的规模和潜力进行了大量研究,但仍然缺乏技术经济分析(tea),无法全面捕捉使用ph值波动方法间接碳化的全过程成本。这种方法既可以将二氧化碳储存在碳酸盐中(可能用于混凝土脱碳),也可以提取关键矿物,将这些过程的成本和收入结合起来。为了解决这一差距,我们开发了一种IV类TEA,专门用于估算采矿废物中关键矿物提取和碳矿化相结合的成本和生命周期评估(LCA)。该模型评估不同废物类型的情况(例如:在不同提取条件(酸型、温度、强度)和碳化参数下,研究了不同提取条件(酸型、温度、强度)下的矿渣、遗留石棉废料、骨料采石场尾矿、铂族金属尾矿。此外,敏感性分析探讨了反应器设计、内部酸碱循环和其他因素对工艺成本和碳效率的影响。我们的研究结果表明,根据工艺设计的不同,碳效率可达95%。酸碱回收对于成本效益和负碳操作至关重要:如果不进行回收,每吨二氧化碳的工艺成本超过3000美元,碳效率为- 280%,而内部酸再生将成本降低到每吨二氧化碳500-800美元,碳效率为41% - 72%。工艺成本因废物类型和工艺条件而异,从每吨二氧化碳800-1800美元不等(假设10%的试剂组成),碳酸盐沉淀步骤占总成本的34-78%。TEA强调,酸碱回收对于扩大矿山尾矿的ph波动过程至关重要,应该成为研究重点,以便在本世纪中叶实现千亿吨规模的二氧化碳储存。此外,在不完全浸出镁和钙的废物中,选择性地回收关键矿物质可以显著抵消资本成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Techno-economic analysis of indirect carbonation processes for carbon sequestration using mining waste†

Techno-economic analysis of indirect carbonation processes for carbon sequestration using mining waste†

Carbon mineralization offers the potential to durably store gigatonne-scale CO2 emissions, with mining waste representing an especially promising feedstock due to its relatively small particle size, global availability, and opportunities for decarbonizing the mining sector. Despite significant research into the scale and potential of this technology, there remains a lack of techno-economic analyses (TEAs) that comprehensively capture the full-process costs of indirect carbonation using a pH-swing approach. This approach enables both CO2 storage in carbonates, potentially usable to decarbonize concrete, and the extraction of critical minerals, incorporating the costs and revenues of coupling these processes. To address this gap, we developed a Class IV TEA tailored to estimate the costs and life cycle assessment (LCA) of combining critical mineral extraction and carbon mineralization in mining wastes. The model evaluates scenarios for various waste types (i.e.., legacy asbestos waste, aggregate quarry tailings, platinum group metal tailings) under different extraction conditions (acid type, temperature, strength) and carbonation parameters. Additionally, sensitivity analyses explore the effects of reactor design, internal acid–base recycling, and other factors on process costs and carbon efficiency. Our findings show carbon efficiencies of up to 95%, depending on process design. Acid–base recycling is critical for cost-effective and carbon-negative operations: without recycling, process costs exceed $3000 per tCO2 and yield a carbon efficiency of −280%, while internal acid regeneration reduces costs to $500–800 per tCO2 with carbon efficiencies ranging from 41–72%. Process costs vary by waste type and process conditions, ranging from $800–1800 per tCO2 (assuming 10% reagent makeup), with the carbonate precipitation step contributing 34–78% of total costs. The TEA highlights that acid–base recycling is essential for scaling the pH-swing process on mine tailings and should be a research priority to enable gigatonne-scale CO2 storage by mid-century. Additionally, selectively recovering critical minerals in wastes where magnesium and calcium are not exclusively leached could significantly offset capital costs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信