Impact of precursor dosing on the surface passivation of AZO/AlOx stacks formed using atomic layer deposition†

IF 3.2 Q2 CHEMISTRY, PHYSICAL
Energy advances Pub Date : 2025-02-03 DOI:10.1039/D4YA00552J
Yan Wang, Theodore D. C. Hobson, Jack E. N. Swallow, Shona McNab, John O’Sullivan, Anastasia H. Soeriyadi, Xinya Niu, Rebekah C. Fraser, Akash Dasgupta, Soumyajit Maitra, Pietro P. Altermatt, Robert S. Weatherup, Matthew Wright and Ruy S. Bonilla
{"title":"Impact of precursor dosing on the surface passivation of AZO/AlOx stacks formed using atomic layer deposition†","authors":"Yan Wang, Theodore D. C. Hobson, Jack E. N. Swallow, Shona McNab, John O’Sullivan, Anastasia H. Soeriyadi, Xinya Niu, Rebekah C. Fraser, Akash Dasgupta, Soumyajit Maitra, Pietro P. Altermatt, Robert S. Weatherup, Matthew Wright and Ruy S. Bonilla","doi":"10.1039/D4YA00552J","DOIUrl":null,"url":null,"abstract":"<p >High-efficiency solar cell architectures, including silicon heterojunction (SHJ) and perovskite/silicon tandems, rely heavily on the unique properties of transparent conducting oxides (TCOs). The push towards terawatt-scale PV manufacturing means it is increasingly desirable to develop indium-free TCOs to facilitate the upscaled manufacturing of high-efficiency cell designs. Aluminium-doped ZnO (AZO) deposited by atomic layer deposition (ALD) has emerged as a promising candidate due to its combination of optical transparency and electrical conductivity. In addition, AZO has also been shown to passivate the c-Si surface. The ability for one material to provide all three properties without requiring any indium is advantageous in single junction and tandem solar devices. Herein, we demonstrate exceptional silicon surface passivation using AZO/AlO<small><sub><em>x</em></sub></small> stacks deposited with ALD, with a <em>J</em><small><sub>0</sub></small> &lt; 1 fA cm<small><sup>−2</sup></small> and corresponding implied open circuit voltage (iV<small><sub>OC</sub></small>) of 740 mV. We provide a comprehensive analysis of the role of ALD precursor dosing to achieve optimised performance. A broad range of characterisation approaches were used to probe the structural, compositional, and chemical properties of AZO films. These indicated that the passivation properties are governed by a delicate interplay between the Zn and Al concentrations in the film, highlighting the importance of precise process control. Optical modelling in a single junction SHJ architecture indicates these AZO films are close in performance to high-mobility indium-containing TCOs. The insights provided by this work may help to further the case of indium-free TCOs, which is critical for upscaled production of high-efficiency solar cells.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 4","pages":" 553-564"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826515/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d4ya00552j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-efficiency solar cell architectures, including silicon heterojunction (SHJ) and perovskite/silicon tandems, rely heavily on the unique properties of transparent conducting oxides (TCOs). The push towards terawatt-scale PV manufacturing means it is increasingly desirable to develop indium-free TCOs to facilitate the upscaled manufacturing of high-efficiency cell designs. Aluminium-doped ZnO (AZO) deposited by atomic layer deposition (ALD) has emerged as a promising candidate due to its combination of optical transparency and electrical conductivity. In addition, AZO has also been shown to passivate the c-Si surface. The ability for one material to provide all three properties without requiring any indium is advantageous in single junction and tandem solar devices. Herein, we demonstrate exceptional silicon surface passivation using AZO/AlOx stacks deposited with ALD, with a J0 < 1 fA cm−2 and corresponding implied open circuit voltage (iVOC) of 740 mV. We provide a comprehensive analysis of the role of ALD precursor dosing to achieve optimised performance. A broad range of characterisation approaches were used to probe the structural, compositional, and chemical properties of AZO films. These indicated that the passivation properties are governed by a delicate interplay between the Zn and Al concentrations in the film, highlighting the importance of precise process control. Optical modelling in a single junction SHJ architecture indicates these AZO films are close in performance to high-mobility indium-containing TCOs. The insights provided by this work may help to further the case of indium-free TCOs, which is critical for upscaled production of high-efficiency solar cells.

Abstract Image

前驱体剂量对原子层沉积形成的AZO/AlO x堆表面钝化的影响。
高效太阳能电池结构,包括硅异质结(SHJ)和钙钛矿/硅串联,在很大程度上依赖于透明导电氧化物(tco)的独特性能。太瓦级光伏制造的推动意味着越来越需要开发无铟tco,以促进高效电池设计的规模化制造。原子层沉积法(ALD)制备掺铝ZnO (AZO)具有良好的光学透明性和导电性,是一种很有前途的材料。此外,AZO也被证明可以钝化c-Si表面。一种材料在不需要任何铟的情况下提供所有三种特性的能力在单结和串联太阳能设备中是有利的。在这里,我们展示了使用ALD沉积的AZO/AlO x堆叠的特殊硅表面钝化,j0 < 1 fA cm-2,相应的隐含开路电压(iVOC)为740 mV。我们提供了ALD前体剂量作用的全面分析,以实现优化性能。广泛的表征方法被用来探测AZO薄膜的结构、组成和化学性质。这表明钝化性能是由薄膜中Zn和Al浓度之间的微妙相互作用决定的,强调了精确过程控制的重要性。单结SHJ结构的光学建模表明,这些AZO薄膜的性能接近高迁移率含铟tco。这项工作提供的见解可能有助于进一步研究无铟tco,这对高效太阳能电池的规模化生产至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信