Techno-economic analysis of indirect carbonation processes for carbon sequestration using mining waste†

IF 3.2 Q2 CHEMISTRY, PHYSICAL
Energy advances Pub Date : 2025-02-05 DOI:10.1039/D4YA00567H
Katherine Vaz Gomes, Caleb M. Woodall, Hélène Pilorgé, Peter Psarras and Jennifer Wilcox
{"title":"Techno-economic analysis of indirect carbonation processes for carbon sequestration using mining waste†","authors":"Katherine Vaz Gomes, Caleb M. Woodall, Hélène Pilorgé, Peter Psarras and Jennifer Wilcox","doi":"10.1039/D4YA00567H","DOIUrl":null,"url":null,"abstract":"<p >Carbon mineralization offers the potential to durably store gigatonne-scale CO<small><sub>2</sub></small> emissions, with mining waste representing an especially promising feedstock due to its relatively small particle size, global availability, and opportunities for decarbonizing the mining sector. Despite significant research into the scale and potential of this technology, there remains a lack of techno-economic analyses (TEAs) that comprehensively capture the full-process costs of indirect carbonation using a pH-swing approach. This approach enables both CO<small><sub>2</sub></small> storage in carbonates, potentially usable to decarbonize concrete, and the extraction of critical minerals, incorporating the costs and revenues of coupling these processes. To address this gap, we developed a Class IV TEA tailored to estimate the costs and life cycle assessment (LCA) of combining critical mineral extraction and carbon mineralization in mining wastes. The model evaluates scenarios for various waste types (<em>i.e.</em>., legacy asbestos waste, aggregate quarry tailings, platinum group metal tailings) under different extraction conditions (acid type, temperature, strength) and carbonation parameters. Additionally, sensitivity analyses explore the effects of reactor design, internal acid–base recycling, and other factors on process costs and carbon efficiency. Our findings show carbon efficiencies of up to 95%, depending on process design. Acid–base recycling is critical for cost-effective and carbon-negative operations: without recycling, process costs exceed $3000 per tCO<small><sub>2</sub></small> and yield a carbon efficiency of −280%, while internal acid regeneration reduces costs to $500–800 per tCO<small><sub>2</sub></small> with carbon efficiencies ranging from 41–72%. Process costs vary by waste type and process conditions, ranging from $800–1800 per tCO<small><sub>2</sub></small> (assuming 10% reagent makeup), with the carbonate precipitation step contributing 34–78% of total costs. The TEA highlights that acid–base recycling is essential for scaling the pH-swing process on mine tailings and should be a research priority to enable gigatonne-scale CO<small><sub>2</sub></small> storage by mid-century. Additionally, selectively recovering critical minerals in wastes where magnesium and calcium are not exclusively leached could significantly offset capital costs.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 3","pages":" 435-446"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00567h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d4ya00567h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon mineralization offers the potential to durably store gigatonne-scale CO2 emissions, with mining waste representing an especially promising feedstock due to its relatively small particle size, global availability, and opportunities for decarbonizing the mining sector. Despite significant research into the scale and potential of this technology, there remains a lack of techno-economic analyses (TEAs) that comprehensively capture the full-process costs of indirect carbonation using a pH-swing approach. This approach enables both CO2 storage in carbonates, potentially usable to decarbonize concrete, and the extraction of critical minerals, incorporating the costs and revenues of coupling these processes. To address this gap, we developed a Class IV TEA tailored to estimate the costs and life cycle assessment (LCA) of combining critical mineral extraction and carbon mineralization in mining wastes. The model evaluates scenarios for various waste types (i.e.., legacy asbestos waste, aggregate quarry tailings, platinum group metal tailings) under different extraction conditions (acid type, temperature, strength) and carbonation parameters. Additionally, sensitivity analyses explore the effects of reactor design, internal acid–base recycling, and other factors on process costs and carbon efficiency. Our findings show carbon efficiencies of up to 95%, depending on process design. Acid–base recycling is critical for cost-effective and carbon-negative operations: without recycling, process costs exceed $3000 per tCO2 and yield a carbon efficiency of −280%, while internal acid regeneration reduces costs to $500–800 per tCO2 with carbon efficiencies ranging from 41–72%. Process costs vary by waste type and process conditions, ranging from $800–1800 per tCO2 (assuming 10% reagent makeup), with the carbonate precipitation step contributing 34–78% of total costs. The TEA highlights that acid–base recycling is essential for scaling the pH-swing process on mine tailings and should be a research priority to enable gigatonne-scale CO2 storage by mid-century. Additionally, selectively recovering critical minerals in wastes where magnesium and calcium are not exclusively leached could significantly offset capital costs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信