Cyborg and bionic systems (Washington, D.C.)最新文献

筛选
英文 中文
Dual-Hand Motion Capture by Using Biological Inspiration for Bionic Bimanual Robot Teleoperation. 利用生物学灵感实现仿生双手机器人遥操作的双手动作捕捉。
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2023-01-01 DOI: 10.34133/cbsystems.0052
Qing Gao, Zhiwen Deng, Zhaojie Ju, Tianwei Zhang
{"title":"Dual-Hand Motion Capture by Using Biological Inspiration for Bionic Bimanual Robot Teleoperation.","authors":"Qing Gao,&nbsp;Zhiwen Deng,&nbsp;Zhaojie Ju,&nbsp;Tianwei Zhang","doi":"10.34133/cbsystems.0052","DOIUrl":"https://doi.org/10.34133/cbsystems.0052","url":null,"abstract":"<p><p>Bionic bimanual robot teleoperation can transfer the grasping and manipulation skills of human dual hands to the bionic bimanual robots to realize natural and flexible manipulation. The motion capture of dual hands plays an important role in the teleoperation. The motion information of dual hands can be captured through the hand detection, localization, and pose estimation and mapped to the bionic bimanual robots to realize the teleoperation. However, although the motion capture technology has achieved great achievements in recent years, visual dual-hand motion capture is still a great challenge. So, this work proposed a dual-hand detection method and a 3-dimensional (3D) hand pose estimation method based on body and hand biological inspiration to achieve convenient and accurate monocular dual-hand motion capture and bionic bimanual robot teleoperation. First, a dual-hand detection method based on body structure constraints is proposed, which uses a parallel structure to combine hand and body relationship features. Second, a 3D hand pose estimation method with bone-constraint loss from single RGB images is proposed. Then, a bionic bimanual robot teleoperation method is designed by using the proposed hand detection and pose estimation methods. Experiment results on public hand datasets show that the performances of the proposed hand detection and 3D hand pose estimation outperform state-of-the-art methods. Experiment results on a bionic bimanual robot teleoperation platform shows the effectiveness of the proposed teleoperation method.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0052"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499487/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10263033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Practical Tracking Method based on Best Buddies Similarity. 基于最佳伙伴相似性的实用跟踪方法。
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2023-01-01 DOI: 10.34133/cbsystems.0050
Haiyu He, Zhen Chen, Haikuo Liu, Xiangdong Liu, Youguang Guo, Jian Li
{"title":"Practical Tracking Method based on Best Buddies Similarity.","authors":"Haiyu He,&nbsp;Zhen Chen,&nbsp;Haikuo Liu,&nbsp;Xiangdong Liu,&nbsp;Youguang Guo,&nbsp;Jian Li","doi":"10.34133/cbsystems.0050","DOIUrl":"https://doi.org/10.34133/cbsystems.0050","url":null,"abstract":"<p><p>Visual tracking is a crucial skill for bionic robots to perceive the environment and control their movement. However, visual tracking is challenging when the target undergoes nonrigid deformation because of the perspective change from the camera mounted on the robot. In this paper, a real-time and scale-adaptive visual tracking method based on best buddies similarity (BBS) is presented, which is a state-of-the-art template matching method that can handle nonrigid deformation. The proposed method improves the original BBS in 4 aspects: (a) The caching scheme is optimized to reduce the computational overhead, (b) the effect of cluttered backgrounds on BBS is theoretically analyzed and a patch-based texture is introduced to enhance the robustness and accuracy, (c) the batch gradient descent algorithm is used to further speed up the method, and (d) a resample strategy is applied to enable the BBS to track the target in scale space. The proposed method on challenging real-world datasets is evaluated and its promising performance is demonstrated.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0050"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465019/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10118285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Robotic Bronchoscope System for Navigation and Biopsy of Pulmonary Lesions. 用于肺部病变导航和活检的新型机器人支气管镜系统
IF 10.5
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2023-01-01 Epub Date: 2023-03-15 DOI: 10.34133/cbsystems.0013
Xingguang Duan, Dongsheng Xie, Runtian Zhang, Xiaotian Li, Jiali Sun, Chao Qian, Xinya Song, Changsheng Li
{"title":"A Novel Robotic Bronchoscope System for Navigation and Biopsy of Pulmonary Lesions.","authors":"Xingguang Duan, Dongsheng Xie, Runtian Zhang, Xiaotian Li, Jiali Sun, Chao Qian, Xinya Song, Changsheng Li","doi":"10.34133/cbsystems.0013","DOIUrl":"10.34133/cbsystems.0013","url":null,"abstract":"<p><p>Transbronchial biopsy sampling, as a minimally invasive method with relatively low risk, has been proved to be a promising treatment in the field of respiratory surgery. Although several robotic bronchoscopes have been developed, it remains a great challenge to balance size and flexibility, while integrating multisensors to realize navigation during complex airway networks. This paper proposes a novel robotic bronchoscope system composed by end effector with relatively small size, relevant actuation unit, and navigation system with path planning and surgical guidance capability. The main part of the end effector is machined by bidirectional groove on a nickel-titanium tube, which can realize bending, rotation, and translation 3 degrees of freedom. A prototype of the proposed robotic bronchoscope system is designed and fabricated, and its performance is tested through several experiments to verify the stiffness, flexibility, and navigation performance. The results show that the proposed system is with good environment adaptiveness, and it can become a promising biopsy method through natural cavity of the human body.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0013"},"PeriodicalIF":10.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10026825/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9657545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An On-Chip Viscoelasticity Sensor for Biological Fluids. 用于生物流体的片上粘弹性传感器。
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2023-01-01 DOI: 10.34133/cbsystems.0006
Qianbin Zhao, Sheng Yan, Boran Zhang, Kai Fan, Jun Zhang, Weihua Li
{"title":"An On-Chip Viscoelasticity Sensor for Biological Fluids.","authors":"Qianbin Zhao,&nbsp;Sheng Yan,&nbsp;Boran Zhang,&nbsp;Kai Fan,&nbsp;Jun Zhang,&nbsp;Weihua Li","doi":"10.34133/cbsystems.0006","DOIUrl":"https://doi.org/10.34133/cbsystems.0006","url":null,"abstract":"<p><p>There are so many non-Newtonian fluids in our daily life, such as milk, blood, cytoplasm, and mucus, most of which are viscoelastic heterogeneous liquid containing cells, inorganic ion, metabolites, and hormones. In microfluidic microparticle-manipulating applications, the target particles are practically distributed within the biological fluids like blood and urine. The viscoelasticity of biological fluid is constantly ignored for simplicity especially when the fluid is substantially diluted and contains rather complex components. However, even the fluid's ultraweak viscoelasticity actually affects the microparticle migration and may bring a completely different behavior compared with the Newtonian fluids. As a result, a robust and easy operated on-chip viscoelasticity sensor is potential and desired in many research and industrial fields, including assay sample preparation, clinical diagnostics, and on-chip sensor. In this work, we employed stable non-Newtonian fluid-polyethylene oxide (PEO) solutions with various concentrations to investigate and calibrate effects of the weak fluidic viscoelasticity on microparticle behaviors in a double-layered microfluidic channel. An analogy-based database of fluidic patterns for viscoelasticity sensing and relaxation time measurement was established. Then, we tested different biological fluids including blood plasma and fetal bovine serum and proved that they exhibited similar viscoelasticity effects to the PEO solutions with the corresponding concentration, which reached a good agreement with available results by references. The detection limitation of relaxation time can reach 1 ms. It promised a robust and integrated on-chip microfluidic viscoelasticity sensor for different biological fluids without complicated calculations.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0006"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076049/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9289630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Survey of Transoral Robotic Mechanisms: Distal Dexterity, Variable Stiffness, and Triangulation. 经口机器人机制调查:远端灵巧性、可变刚性和三角设计
IF 10.5
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2023-01-01 Epub Date: 2023-03-13 DOI: 10.34133/cbsystems.0007
Xiaoyi Gu, Hongliang Ren
{"title":"A Survey of Transoral Robotic Mechanisms: Distal Dexterity, Variable Stiffness, and Triangulation.","authors":"Xiaoyi Gu, Hongliang Ren","doi":"10.34133/cbsystems.0007","DOIUrl":"10.34133/cbsystems.0007","url":null,"abstract":"<p><p>Robot-assisted technologies are being investigated to overcome the limitations of the current solutions for transoral surgeries, which suffer from constrained insertion ports, lengthy and indirect passageways, and narrow anatomical structures. This paper reviews distal dexterity mechanisms, variable stiffness mechanisms, and triangulation mechanisms, which are closely related to the specific technical challenges of transoral robotic surgery (TORS). According to the structure features in moving and orienting end effectors, the distal dexterity designs can be classified into 4 categories: serial mechanism, continuum mechanism, parallel mechanism, and hybrid mechanism. To ensure adequate adaptability, conformability, and safety, surgical robots must have high flexibility, which can be achieved by varying the stiffness. Variable stiffness (VS) mechanisms based on their working principles in TORS include phase-transition-based VS mechanism, jamming-based VS mechanism, and structure-based VS mechanism. Triangulations aim to obtain enough workspace and create adequate traction and counter traction for various operations, including visualization, retraction, dissection, and suturing, with independently controllable manipulators. The merits and demerits of these designs are discussed to provide a reference for developing new surgical robotic systems (SRSs) capable of overcoming the limitations of existing systems and addressing challenges imposed by TORS procedures.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0007"},"PeriodicalIF":10.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088455/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9309454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrafast Miniature Robotic Swimmers with Upstream Motility. 具有上游运动能力的超快微型机器人游泳器。
IF 10.5
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2023-01-01 Epub Date: 2023-03-15 DOI: 10.34133/cbsystems.0015
Yibin Wang, Hui Chen, Junhui Law, Xingzhou Du, Jiangfan Yu
{"title":"Ultrafast Miniature Robotic Swimmers with Upstream Motility.","authors":"Yibin Wang, Hui Chen, Junhui Law, Xingzhou Du, Jiangfan Yu","doi":"10.34133/cbsystems.0015","DOIUrl":"10.34133/cbsystems.0015","url":null,"abstract":"<p><p>With the development of materials science and micro-nano fabrication techniques, miniature soft robots at millimeter or submillimeter size can be manufactured and actuated remotely. The small-scaled robots have the unique capability to access hard-to-reach regions in the human body in a noninvasive manner. To date, it is still challenging for miniature robots to accurately move in the diverse and dynamic environments in the human body (e.g., in blood flow). To effectively locomote in the vascular system, miniature swimmers with upstream swimming capability are required. Herein, we design and fabricate a miniature robotic swimmer capable of performing ultrafast swimming in a fluidic environment. The maximum velocity of the swimmer in water is 30 cm/s, which is 60 body lengths. Moreover, in a tubular environment, the swimmer can still obtain a swimming velocity of 17 cm/s. The swimmer can also perform upstream swimming in a tubular environment with a velocity of 5 cm/s when the flow speed is 10 cm/s. The ultrasound-guided navigation of the swimmer in a phantom mimicking a blood vessel is also realized. This work gives insight into the design of agile undulatory milliswimmers for future biomedical applications.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0015"},"PeriodicalIF":10.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019906/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9643133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of a Fuel Explosion-Based Chameleon-Like Soft Robot Aided by the Comprehensive Dynamic Model. 基于综合动力学模型的燃料爆炸类变色龙软机器人设计。
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2023-01-01 DOI: 10.34133/cbsystems.0010
Haiqin Zhou, Shunze Cao, Shuailong Zhang, Fenggang Li, Nan Ma
{"title":"Design of a Fuel Explosion-Based Chameleon-Like Soft Robot Aided by the Comprehensive Dynamic Model.","authors":"Haiqin Zhou,&nbsp;Shunze Cao,&nbsp;Shuailong Zhang,&nbsp;Fenggang Li,&nbsp;Nan Ma","doi":"10.34133/cbsystems.0010","DOIUrl":"https://doi.org/10.34133/cbsystems.0010","url":null,"abstract":"<p><p>Soft robotics have advantages over the traditional rigid ones to achieve the bending motion but face with challenges to realize the rapid and long-distance linear motion due to the lack of a suitable actuation system. In this paper, a new explosion-based soft robot is proposed to generate the axial fast extension by the explosion pressure. To support and predict the performance of this explosion-based soft robot, a novel dynamic model is developed by considering the change of working fluid (molecular numbers) and some unavoidable and influential factors in the combustion process. Then, based on the physical prototype, a set of experiments is conducted to test the performance of the explosion-based soft robot in performing the axial extensions, as well as to validate the model proposed in this article. It is found that the novel explosion-based soft robot can achieve rapid axial extension by the developed explosion-based actuation system. The explosion-based soft robot can achieve 41-mm displacement at a fuel mass of 180 mg. In addition, the proposed dynamic model can be validated with an average error of 1.5%. The proposed approach in this study provides a promising solution for future high-power density explosion-based soft robots.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0010"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014331/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9643130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Magnetic Bead Manipulation in Microfluidic Chips for Biological Application. 生物微流控芯片中的磁珠操作。
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2023-01-01 DOI: 10.34133/cbsystems.0023
Gaozhe Cai, Zixin Yang, Yu-Cheng Chen, Yaru Huang, Lijuan Liang, Shilun Feng, Jianlong Zhao
{"title":"Magnetic Bead Manipulation in Microfluidic Chips for Biological Application.","authors":"Gaozhe Cai,&nbsp;Zixin Yang,&nbsp;Yu-Cheng Chen,&nbsp;Yaru Huang,&nbsp;Lijuan Liang,&nbsp;Shilun Feng,&nbsp;Jianlong Zhao","doi":"10.34133/cbsystems.0023","DOIUrl":"https://doi.org/10.34133/cbsystems.0023","url":null,"abstract":"<p><p>Magnetic beads manipulation in microfluidic chips is a promising research field for biological application, especially in the detection of biological targets. In this review, we intend to present a thorough and in-depth overview of recent magnetic beads manipulation in microfluidic chips and its biological application. First, we introduce the mechanism of magnetic manipulation in microfluidic chip, including force analysis, particle properties, and surface modification. Then, we compare some existing methods of magnetic manipulation in microfluidic chip and list their biological application. Besides, the suggestions and outlook for future developments in the magnetic manipulation system are also discussed and summarized.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0023"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243203/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9954547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Design and Control for WLR-3P: A Hydraulic Wheel-Legged Robot. WLR-3P液压轮腿机器人的设计与控制。
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2023-01-01 DOI: 10.34133/cbsystems.0025
Xu Li, Haoyang Yu, Haibo Feng, Songyuan Zhang, Yili Fu
{"title":"Design and Control for WLR-3P: A Hydraulic Wheel-Legged Robot.","authors":"Xu Li,&nbsp;Haoyang Yu,&nbsp;Haibo Feng,&nbsp;Songyuan Zhang,&nbsp;Yili Fu","doi":"10.34133/cbsystems.0025","DOIUrl":"https://doi.org/10.34133/cbsystems.0025","url":null,"abstract":"<p><p>The robot used for disaster rescue or field exploration requires the ability of fast moving on flat road and adaptability on complex terrain. The hybrid wheel-legged robot (WLR-3P, prototype of the third-generation hydraulic wheel-legged robot) has the characteristics of fast and efficient mobility on flat surfaces and high environmental adaptability on rough terrains. In this paper, 3 design requirements are proposed to improve the mobility and environmental adaptability of the robot. To meet these 3 requirements, 2 design principles for each requirement are put forward. First, for light weight and low inertia with high stiffness, 3-dimensional printing technology and lightweight material are adopted. Second, the integrated hydraulically driven unit is used for high power density and fast response actuation. Third, the micro-hydraulic power unit achieves power autonomy, adopting the hoseless design to strengthen the reliability of the hydraulic system. What is more, the control system including hierarchical distributed electrical system and control strategy is presented. The mobility and adaptability of WLR-3P are demonstrated with a series of experiments. Finally, the robot can achieve a speed of 13.6 km/h and a jumping height of 0.2 m.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0025"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250005/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9992402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Neural Coordination Strategy for Attachment and Detachment of a Climbing Robot Inspired by Gecko Locomotion. 受壁虎运动启发的攀爬机器人附着与脱离的神经协调策略。
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2023-01-01 DOI: 10.34133/cbsystems.0008
Bingcheng Wang, Zhouyi Wang, Yifan Song, Weijia Zong, Linghao Zhang, Keju Ji, Poramate Manoonpong, Zhendong Dai
{"title":"A Neural Coordination Strategy for Attachment and Detachment of a Climbing Robot Inspired by Gecko Locomotion.","authors":"Bingcheng Wang,&nbsp;Zhouyi Wang,&nbsp;Yifan Song,&nbsp;Weijia Zong,&nbsp;Linghao Zhang,&nbsp;Keju Ji,&nbsp;Poramate Manoonpong,&nbsp;Zhendong Dai","doi":"10.34133/cbsystems.0008","DOIUrl":"https://doi.org/10.34133/cbsystems.0008","url":null,"abstract":"<p><p>Climbing behavior is a superior motion skill that animals have evolved to obtain a more beneficial position in complex natural environments. Compared to animals, current bionic climbing robots are less agile, stable, and energy-efficient. Further, they locomote at a low speed and have poor adaptation to the substrate. One of the key elements that can improve their locomotion efficiency is the active and flexible feet or toes observed in climbing animals. Inspired by the active attachment-detachment behavior of geckos, a hybrid pneumatic-electric-driven climbing robot with active attachment-detachment bionic flexible feet (toes) was developed. Although the introduction of bionic flexible toes can effectively improve the robot's adaptability to the environment, it also poses control challenges, specifically, the realization of attachment-detachment behavior by the mechanics of the feet, the realization of hybrid drive control with different response characteristics, and the interlimb collaboration and limb-foot coordination with a hysteresis effect. Through the analysis of geckos' limbs and foot kinematic behavior during climbing, rhythmic attachment-detachment strategies and coordination behavior between toes and limbs at different inclines were identified. To enable the robot to achieve similar foot attachment-detachment behavior for climbing ability enhancement, we propose a modular neural control framework comprising a central pattern generator module, a post-processing central pattern generation module, a hysteresis delay line module, and an actuator signal conditioning module. Among them, the hysteresis adaptation module helps the bionic flexible toes to achieve variable phase relationships with the motorized joint, thus enabling proper limb-to-foot coordination and interlimb collaboration. The experiments demonstrated that the robot with neural control achieved proper coordination, resulting in a foot with a 285% larger adhesion area than that of a conventional algorithm. In addition, in the plane/arc climbing scenario, the robot with coordination behavior increased by as much as 150%, compared to the incoordinated one owing to its higher adhesion reliability.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0008"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076062/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9658715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信