{"title":"使用学习方法进行基于 3D 骨架的动作识别研究。","authors":"Bin Ren, Mengyuan Liu, Runwei Ding, Hong Liu","doi":"10.34133/cbsystems.0100","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional skeleton-based action recognition (3D SAR) has gained important attention within the computer vision community, owing to the inherent advantages offered by skeleton data. As a result, a plethora of impressive works, including those based on conventional handcrafted features and learned feature extraction methods, have been conducted over the years. However, prior surveys on action recognition have primarily focused on video or red-green-blue (RGB) data-dominated approaches, with limited coverage of reviews related to skeleton data. Furthermore, despite the extensive application of deep learning methods in this field, there has been a notable absence of research that provides an introductory or comprehensive review from the perspective of deep learning architectures. To address these limitations, this survey first underscores the importance of action recognition and emphasizes the significance of 3-dimensional (3D) skeleton data as a valuable modality. Subsequently, we provide a comprehensive introduction to mainstream action recognition techniques based on 4 fundamental deep architectures, i.e., recurrent neural networks, convolutional neural networks, graph convolutional network, and Transformers. All methods with the corresponding architectures are then presented in a data-driven manner with detailed discussion. Finally, we offer insights into the current largest 3D skeleton dataset, NTU-RGB+D, and its new edition, NTU-RGB+D 120, along with an overview of several top-performing algorithms on these datasets. To the best of our knowledge, this research represents the first comprehensive discussion of deep learning-based action recognition using 3D skeleton data.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"5 ","pages":"0100"},"PeriodicalIF":10.5000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096730/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Survey on 3D Skeleton-Based Action Recognition Using Learning Method.\",\"authors\":\"Bin Ren, Mengyuan Liu, Runwei Ding, Hong Liu\",\"doi\":\"10.34133/cbsystems.0100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three-dimensional skeleton-based action recognition (3D SAR) has gained important attention within the computer vision community, owing to the inherent advantages offered by skeleton data. As a result, a plethora of impressive works, including those based on conventional handcrafted features and learned feature extraction methods, have been conducted over the years. However, prior surveys on action recognition have primarily focused on video or red-green-blue (RGB) data-dominated approaches, with limited coverage of reviews related to skeleton data. Furthermore, despite the extensive application of deep learning methods in this field, there has been a notable absence of research that provides an introductory or comprehensive review from the perspective of deep learning architectures. To address these limitations, this survey first underscores the importance of action recognition and emphasizes the significance of 3-dimensional (3D) skeleton data as a valuable modality. Subsequently, we provide a comprehensive introduction to mainstream action recognition techniques based on 4 fundamental deep architectures, i.e., recurrent neural networks, convolutional neural networks, graph convolutional network, and Transformers. All methods with the corresponding architectures are then presented in a data-driven manner with detailed discussion. Finally, we offer insights into the current largest 3D skeleton dataset, NTU-RGB+D, and its new edition, NTU-RGB+D 120, along with an overview of several top-performing algorithms on these datasets. To the best of our knowledge, this research represents the first comprehensive discussion of deep learning-based action recognition using 3D skeleton data.</p>\",\"PeriodicalId\":72764,\"journal\":{\"name\":\"Cyborg and bionic systems (Washington, D.C.)\",\"volume\":\"5 \",\"pages\":\"0100\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096730/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cyborg and bionic systems (Washington, D.C.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/cbsystems.0100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/cbsystems.0100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Survey on 3D Skeleton-Based Action Recognition Using Learning Method.
Three-dimensional skeleton-based action recognition (3D SAR) has gained important attention within the computer vision community, owing to the inherent advantages offered by skeleton data. As a result, a plethora of impressive works, including those based on conventional handcrafted features and learned feature extraction methods, have been conducted over the years. However, prior surveys on action recognition have primarily focused on video or red-green-blue (RGB) data-dominated approaches, with limited coverage of reviews related to skeleton data. Furthermore, despite the extensive application of deep learning methods in this field, there has been a notable absence of research that provides an introductory or comprehensive review from the perspective of deep learning architectures. To address these limitations, this survey first underscores the importance of action recognition and emphasizes the significance of 3-dimensional (3D) skeleton data as a valuable modality. Subsequently, we provide a comprehensive introduction to mainstream action recognition techniques based on 4 fundamental deep architectures, i.e., recurrent neural networks, convolutional neural networks, graph convolutional network, and Transformers. All methods with the corresponding architectures are then presented in a data-driven manner with detailed discussion. Finally, we offer insights into the current largest 3D skeleton dataset, NTU-RGB+D, and its new edition, NTU-RGB+D 120, along with an overview of several top-performing algorithms on these datasets. To the best of our knowledge, this research represents the first comprehensive discussion of deep learning-based action recognition using 3D skeleton data.