体外血管化器官芯片模型结构研究进展。

IF 10.5 Q1 ENGINEERING, BIOMEDICAL
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2024-04-25 eCollection Date: 2024-01-01 DOI:10.34133/cbsystems.0107
Hongze Yin, Yue Wang, Na Liu, Songyi Zhong, Long Li, Quan Zhang, Zeyang Liu, Tao Yue
{"title":"体外血管化器官芯片模型结构研究进展。","authors":"Hongze Yin, Yue Wang, Na Liu, Songyi Zhong, Long Li, Quan Zhang, Zeyang Liu, Tao Yue","doi":"10.34133/cbsystems.0107","DOIUrl":null,"url":null,"abstract":"<p><p>Microvasculature plays a crucial role in human physiology and is closely related to various human diseases. Building in vitro vascular networks is essential for studying vascular tissue behavior with repeatable morphology and signaling conditions. Engineered 3D microvascular network models, developed through advanced microfluidic-based techniques, provide accurate and reproducible platforms for studying the microvasculature in vitro, an essential component for designing organ-on-chips to achieve greater biological relevance. By optimizing the microstructure of microfluidic devices to closely mimic the in vivo microenvironment, organ-specific models with healthy and pathological microvascular tissues can be created. This review summarizes recent advancements in in vitro strategies for constructing microvascular tissue and microfluidic devices. It discusses the static vascularization chips' classification, structural characteristics, and the various techniques used to build them: growing blood vessels on chips can be either static or dynamic, and in vitro blood vessels can be grown in microchannels, elastic membranes, and hydrogels. Finally, the paper discusses the application scenarios and key technical issues of existing vascularization chips. It also explores the potential for a novel organoid chip vascularization approach that combines organoids and organ chips to generate better vascularization chips.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"5 ","pages":"0107"},"PeriodicalIF":10.5000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12063728/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advances in the Model Structure of In Vitro Vascularized Organ-on-a-Chip.\",\"authors\":\"Hongze Yin, Yue Wang, Na Liu, Songyi Zhong, Long Li, Quan Zhang, Zeyang Liu, Tao Yue\",\"doi\":\"10.34133/cbsystems.0107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microvasculature plays a crucial role in human physiology and is closely related to various human diseases. Building in vitro vascular networks is essential for studying vascular tissue behavior with repeatable morphology and signaling conditions. Engineered 3D microvascular network models, developed through advanced microfluidic-based techniques, provide accurate and reproducible platforms for studying the microvasculature in vitro, an essential component for designing organ-on-chips to achieve greater biological relevance. By optimizing the microstructure of microfluidic devices to closely mimic the in vivo microenvironment, organ-specific models with healthy and pathological microvascular tissues can be created. This review summarizes recent advancements in in vitro strategies for constructing microvascular tissue and microfluidic devices. It discusses the static vascularization chips' classification, structural characteristics, and the various techniques used to build them: growing blood vessels on chips can be either static or dynamic, and in vitro blood vessels can be grown in microchannels, elastic membranes, and hydrogels. Finally, the paper discusses the application scenarios and key technical issues of existing vascularization chips. It also explores the potential for a novel organoid chip vascularization approach that combines organoids and organ chips to generate better vascularization chips.</p>\",\"PeriodicalId\":72764,\"journal\":{\"name\":\"Cyborg and bionic systems (Washington, D.C.)\",\"volume\":\"5 \",\"pages\":\"0107\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12063728/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cyborg and bionic systems (Washington, D.C.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/cbsystems.0107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/cbsystems.0107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

微血管系统在人体生理中起着至关重要的作用,与人类各种疾病密切相关。构建体外血管网络对于研究具有可重复形态和信号条件的血管组织行为至关重要。通过先进的微流体技术开发的工程3D微血管网络模型,为体外研究微血管系统提供了准确和可重复的平台,这是设计器官芯片以实现更大生物学相关性的重要组成部分。通过优化微流控装置的微观结构,紧密模拟体内微环境,可以创建具有健康和病理微血管组织的器官特异性模型。本文综述了体外构建微血管组织和微流体装置的研究进展。讨论了静态血管化芯片的分类、结构特点以及用于构建它们的各种技术:芯片上生长的血管可以是静态的,也可以是动态的,体外血管可以在微通道、弹性膜和水凝胶中生长。最后,讨论了现有血管化芯片的应用场景和关键技术问题。它还探索了一种新型类器官芯片血管化方法的潜力,该方法将类器官和器官芯片结合起来,产生更好的血管化芯片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances in the Model Structure of In Vitro Vascularized Organ-on-a-Chip.

Microvasculature plays a crucial role in human physiology and is closely related to various human diseases. Building in vitro vascular networks is essential for studying vascular tissue behavior with repeatable morphology and signaling conditions. Engineered 3D microvascular network models, developed through advanced microfluidic-based techniques, provide accurate and reproducible platforms for studying the microvasculature in vitro, an essential component for designing organ-on-chips to achieve greater biological relevance. By optimizing the microstructure of microfluidic devices to closely mimic the in vivo microenvironment, organ-specific models with healthy and pathological microvascular tissues can be created. This review summarizes recent advancements in in vitro strategies for constructing microvascular tissue and microfluidic devices. It discusses the static vascularization chips' classification, structural characteristics, and the various techniques used to build them: growing blood vessels on chips can be either static or dynamic, and in vitro blood vessels can be grown in microchannels, elastic membranes, and hydrogels. Finally, the paper discusses the application scenarios and key technical issues of existing vascularization chips. It also explores the potential for a novel organoid chip vascularization approach that combines organoids and organ chips to generate better vascularization chips.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信