Cyborg and bionic systems (Washington, D.C.)最新文献

筛选
英文 中文
Asymmetrical Obstacles Enable Unilateral Inertial Focusing and Separation in Sinusoidal Microchannel. 非对称障碍物实现正弦微通道的单边惯性聚焦与分离。
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2023-01-01 DOI: 10.34133/cbsystems.0036
Haotian Cha, Yuchen Dai, Helena H W B Hansen, Lingxi Ouyang, Xiangxun Chen, Xiaoyue Kang, Hongjie An, Hang Thu Ta, Nam-Trung Nguyen, Jun Zhang
{"title":"Asymmetrical Obstacles Enable Unilateral Inertial Focusing and Separation in Sinusoidal Microchannel.","authors":"Haotian Cha,&nbsp;Yuchen Dai,&nbsp;Helena H W B Hansen,&nbsp;Lingxi Ouyang,&nbsp;Xiangxun Chen,&nbsp;Xiaoyue Kang,&nbsp;Hongjie An,&nbsp;Hang Thu Ta,&nbsp;Nam-Trung Nguyen,&nbsp;Jun Zhang","doi":"10.34133/cbsystems.0036","DOIUrl":"https://doi.org/10.34133/cbsystems.0036","url":null,"abstract":"<p><p>Inertial microfluidics uses the intrinsic fluid inertia in confined channels to manipulate the particles and cells in a simple, high-throughput, and precise manner. Inertial focusing in a straight channel results in several equilibrium positions within the cross sections. Introducing channel curvature and adjusting the cross-sectional aspect ratio and shape can modify inertial focusing positions and can reduce the number of equilibrium positions. In this work, we introduce an innovative way to adjust the inertial focusing and reduce equilibrium positions by embedding asymmetrical obstacle microstructures. We demonstrated that asymmetrical concave obstacles could break the symmetry of original inertial focusing positions, resulting in unilateral focusing. In addition, we characterized the influence of obstacle size and 3 asymmetrical obstacle patterns on unilateral inertial focusing. Finally, we applied differential unilateral focusing on the separation of 10- and 15-μm particles and isolation of brain cancer cells (U87MG) from white blood cells (WBCs), respectively. The results indicated an excellent cancer cell recovery of 96.4% and WBC rejection ratio of 98.81%. After single processing, the purity of the cancer cells was dramatically enhanced from 1.01% to 90.13%, with an 89.24-fold enrichment. We believe that embedding asymmetric concave micro-obstacles is a new strategy to achieve unilateral inertial focusing and separation in curved channels.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0036"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278993/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9709185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Voice of the Body: Why AI Should Listen to It and an Archive. 身体的声音:为什么人工智能应该倾听它和一个档案。
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2023-01-01 DOI: 10.34133/cbsystems.0005
Kun Qian, Bin Hu, Yoshiharu Yamamoto, Björn W Schuller
{"title":"The Voice of the Body: Why AI Should Listen to It and an Archive.","authors":"Kun Qian,&nbsp;Bin Hu,&nbsp;Yoshiharu Yamamoto,&nbsp;Björn W Schuller","doi":"10.34133/cbsystems.0005","DOIUrl":"https://doi.org/10.34133/cbsystems.0005","url":null,"abstract":"<p><p>The sound generated by body carries important information about our health status physically and psychologically. In the past decades, we have witnessed a plethora of successes achieved in the field of body sound analysis. Nevertheless, the fundamentals of this young field are still not well established. In particular, publicly accessible databases are rarely developed, which dramatically restrains a sustainable research. To this end, we are launching and continuously calling for participation from the global scientific community to contribute to the Voice of the Body (VoB) archive. We aim to build an open access platform to collect the well-established body sound databases in a well standardized way. Moreover, we hope to organize a series of challenges to promote the development of audio-driven methods for healthcare via the proposed VoB. We believe that VoB can help break the walls between different subjects toward an era of Medicine 4.0 enriched by audio intelligence.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0005"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076047/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9294941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic Microrobots with Folate Targeting for Drug Delivery. 具有叶酸靶向药物递送的磁性微型机器人。
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2023-01-01 DOI: 10.34133/cbsystems.0019
Min Ye, Yan Zhou, Hongyu Zhao, Xiaopu Wang
{"title":"Magnetic Microrobots with Folate Targeting for Drug Delivery.","authors":"Min Ye,&nbsp;Yan Zhou,&nbsp;Hongyu Zhao,&nbsp;Xiaopu Wang","doi":"10.34133/cbsystems.0019","DOIUrl":"https://doi.org/10.34133/cbsystems.0019","url":null,"abstract":"Untethered microrobots can be used for cargo delivery (e.g., drug molecules, stem cells, and genes) targeting designated areas. However, it is not enough to just reach the lesion site, as some drugs can only play the best therapeutic effect within the cells. To this end, folic acid (FA) was introduced into microrobots in this work as a key to mediate endocytosis of drugs into cells. The microrobots here were fabricated with biodegradable gelatin methacryloyl (GelMA) and modified with magnetic metal–organic framework (MOF). The porous structure of MOF and the hydrogel network of polymerized GelMA were used for the loading of enough FA and anticancer drug doxorubicin (DOX) respectively. Utilizing the magnetic property of magnetic MOF, these microrobots can gather around the lesion site with the navigation of magnetic fields. The combination effects of FA targeting and magnetic navigation substantially improve the anticancer efficiency of these microrobots. The result shows that the cancer cells inhibition rate of microrobots with FA can be up to 93%, while that of the ones without FA was only 78%. The introduction of FA is a useful method to improve the drug transportation ability of microrobots, providing a meaningful reference for further research.","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0019"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202387/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9518526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Carbon-Based Stimuli-Responsive Nanomaterials: Classification and Application. 碳基刺激响应纳米材料:分类与应用。
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2023-01-01 DOI: 10.34133/cbsystems.0022
Chen Zhao, Jun Kang, Yuwen Li, Yan Wang, Xiaoying Tang, Zhenqi Jiang
{"title":"Carbon-Based Stimuli-Responsive Nanomaterials: Classification and Application.","authors":"Chen Zhao,&nbsp;Jun Kang,&nbsp;Yuwen Li,&nbsp;Yan Wang,&nbsp;Xiaoying Tang,&nbsp;Zhenqi Jiang","doi":"10.34133/cbsystems.0022","DOIUrl":"https://doi.org/10.34133/cbsystems.0022","url":null,"abstract":"<p><p>Carbon-based nanomaterials, including carbon nanotubes, carbon nanospheres, and carbon nanofibers, are becoming a research hotspot due to their unique structure and good mechanical, thermal, electrical, optical, and chemical properties. With the development of material synthesis technology, they can be functionalized and used in various fields such as energy, environment, and biomedicine. In particular, stimuli-responsive carbon-based nanomaterials have stood out in recent years because of their <i>smart</i> behavior. Researchers have applied carbon-based nanomaterials to different disease treatments based on their stimulus-response properties. In this paper, based on stimuli-responsive carbon-based nanomaterials' morphology, we categorize them into carbon nanotubes, carbon nanospheres, and carbon nanofibers according to their morphology. Then, their applications in probes, bioimaging, tumor therapy, and other fields are discussed. Finally, we address the advantages and disadvantages of carbon-based stimuli-responsive nanomaterials and discuss their future perspective.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0022"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202192/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10301127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
A Systematic Review of the Use of Commercial Wearable Activity Trackers for Monitoring Recovery in Individuals Undergoing Total Hip Replacement Surgery. 关于使用商用可穿戴活动追踪器监测全髋关节置换手术患者恢复情况的系统性综述》(A Systematic Review of Use of Commercial Wearable Activity Trackers for Monitoring Recovery in Individuals Undergoing Total Hip Replacement Surgery)。
IF 10.5
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2022-10-26 eCollection Date: 2022-01-01 DOI: 10.34133/2022/9794641
Nasibeh Babaei, Negin Hannani, Nader Jafarnia Dabanloo, Shayan Bahadori
{"title":"A Systematic Review of the Use of Commercial Wearable Activity Trackers for Monitoring Recovery in Individuals Undergoing Total Hip Replacement Surgery.","authors":"Nasibeh Babaei, Negin Hannani, Nader Jafarnia Dabanloo, Shayan Bahadori","doi":"10.34133/2022/9794641","DOIUrl":"10.34133/2022/9794641","url":null,"abstract":"<p><p>The innovation of wearable devices is advancing rapidly. Activity monitors can be used to improve the total hip replacement (THR) patients' recovery process and reduce costs. This systematic review assessed the body-worn accelerometers used in studies to enhance the rehabilitation process and monitor THR patients. Electronic databases such as Cochrane Database of Systematic Reviews library, CINAHL CompleteVR, Science Citation Index, and MedlineVR from January 2000 to January 2022 were searched. Due to inclusion criteria, fourteen eligible studies that utilised commercial wearable technology to monitor physical activity both before and after THR were identified. Their evidence quality was assessed with RoB 2.0 and ROBINS-I. This study demonstrates that wearable device technology might be feasible to predict, monitor, and detect physical activity following THR. They could be used as a motivational tool to increase patients' mobility and enhance the recovery process. Also, wearable activity monitors could provide a better insight into the individual's activity level in contrast to subjective self-reported questionnaires. However, they have some limitations, and further evidence is needed to establish this technology as the primary device in THR rehabilitation.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"2022 ","pages":"9794641"},"PeriodicalIF":10.5,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636847/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10672222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficacy of Biological and Physical Enhancement on Targeted Muscle Reinnervation 生物和物理强化对靶向肌肉再支配的疗效
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2022-09-15 DOI: 10.34133/2022/9759265
Siyang Zhong, Zijun Zhang, Huan Su, Chenyang Li, Yifeng Lin, Wei Lu, Zhendong Jiang, Lin Yang
{"title":"Efficacy of Biological and Physical Enhancement on Targeted Muscle Reinnervation","authors":"Siyang Zhong, Zijun Zhang, Huan Su, Chenyang Li, Yifeng Lin, Wei Lu, Zhendong Jiang, Lin Yang","doi":"10.34133/2022/9759265","DOIUrl":"https://doi.org/10.34133/2022/9759265","url":null,"abstract":"Targeted muscle reinnervation (TMR) is a microsurgical repair technique to reconstruct the anatomical structure between the distal nerve and the muscle stump to provide more myoelectric information to the artificially intelligent prosthesis. Postoperative functional electrical stimulation treatment of the patient's denervated muscle or proximal nerve stump as well as nerve growth factor injection is effective in promoting nerve regeneration and muscle function recovery. In this experiment, we successfully established a TMR rat model and divided Sprague-Dawley (SD) adult male rats into TMR group, TMR + FES group, and TMR + NGF group according to TMR and whether they received FES treatment or NGF injection after surgery, and the recovery effect of rat neuromuscular function was assessed by analyzing EMG signals. Through the experiments, we confirmed that growth factor supplementation and low-frequency electrical stimulation can effectively promote the regeneration of the transplanted nerve as well as significantly enhance the motor function of the target muscle and have a positive effect on the regeneration of the transplanted nerve.","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46725755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Platelet Detection Based on Improved YOLO_v3 基于改进YOLO_v3的血小板检测
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2022-09-14 DOI: 10.34133/2022/9780569
Renting Liu, Chunhui Ren, Miaomiao Fu, Z. Chu, Jiuchuan Guo
{"title":"Platelet Detection Based on Improved YOLO_v3","authors":"Renting Liu, Chunhui Ren, Miaomiao Fu, Z. Chu, Jiuchuan Guo","doi":"10.34133/2022/9780569","DOIUrl":"https://doi.org/10.34133/2022/9780569","url":null,"abstract":"Platelet detection and counting play a greatly significant role in medical field, especially in routine blood tests which can be used to judge blood status and diagnose related diseases. Therefore, platelet detection is valuable for diagnosing related blood diseases such as liver-related diseases. Blood analyzers and visual microscope counting were widely used for platelet detection, but the experimental procedure took nearly 20 minutes and can only be performed by a professional doctor. In recent years, technological breakthroughs in artificial intelligence have made it possible to detect red blood cells through deep learning methods. However, due to the inaccessibility of platelet datasets and the small size of platelets, deep learning-based platelet detection studies are almost nonexistent. In this paper, we carried out experiments for platelet detection based on commonly used object detection models, such as Single Shot Multibox Detector (SSD), RetinaNet, Faster_rcnn, and You Only Look Once_v3 (YOLO_v3). Compared with the other three models, YOLO_v3 can detect platelets more effectively. And we proposed three ideas for improvement based on YOLO_v3. Our study demonstrated that YOLO_v3 can be adopted for platelet detection accurately and in real time. We also implemented YOLO_v3 with multiscale fusion, YOLO_v3 with anchor box clustering, and YOLO_v3 with match parameter on our self-created dataset and, respectively, achieved 1.8% higher average precision (AP), 2.38% higher AP, and 2.05% higher AP than YOLO_v3. The comprehensive experiments revealed that YOLO_v3 with the improved ideas performs better in platelet detection than YOLO_v3.","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45464144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Graphdiyne-Related Materials in Biomedical Applications and Their Potential in Peripheral Nerve Tissue Engineering 石墨烯相关材料在生物医学中的应用及其在周围神经组织工程中的潜力
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2022-09-10 DOI: 10.34133/2022/9892526
Xiao Li, Huiquan Jiang, Ning He, Wei-En Yuan, Y. Qian, Y. Ouyang
{"title":"Graphdiyne-Related Materials in Biomedical Applications and Their Potential in Peripheral Nerve Tissue Engineering","authors":"Xiao Li, Huiquan Jiang, Ning He, Wei-En Yuan, Y. Qian, Y. Ouyang","doi":"10.34133/2022/9892526","DOIUrl":"https://doi.org/10.34133/2022/9892526","url":null,"abstract":"Graphdiyne (GDY) is a new member of the family of carbon-based nanomaterials with hybridized carbon atoms of sp and sp2, including α, β, γ, and (6,6,12)-GDY, which differ in their percentage of acetylene bonds. The unique structure of GDY provides many attractive features, such as uniformly distributed pores, highly π-conjugated structure, high thermal stability, low toxicity, biodegradability, large specific surface area, tunable electrical conductivity, and remarkable thermal conductivity. Therefore, GDY is widely used in energy storage, catalysis, and energy fields, in addition to biomedical fields, such as biosensing, cancer therapy, drug delivery, radiation protection, and tissue engineering. In this review, we first discuss the synthesis of GDY with different shapes, including nanotubes, nanowires, nanowalls, and nanosheets. Second, we present the research progress in the biomedical field in recent years, along with the biodegradability and biocompatibility of GDY based on the existing literature. Subsequently, we present recent research results on the use of nanomaterials in peripheral nerve regeneration (PNR). Based on the wide application of nanomaterials in PNR and the remarkable properties of GDY, we predict the prospects and current challenges of GDY-based materials for PNR.","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42798929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
The Inverse Problems for Computational Psychophysiology: Opinions and Insights 计算心理生理学的反问题:观点和见解
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2022-08-24 DOI: 10.34133/2022/9850248
B. Hu, Kun Qian, Ye Zhang, Jian Shen, B. Schuller
{"title":"The Inverse Problems for Computational Psychophysiology: Opinions and Insights","authors":"B. Hu, Kun Qian, Ye Zhang, Jian Shen, B. Schuller","doi":"10.34133/2022/9850248","DOIUrl":"https://doi.org/10.34133/2022/9850248","url":null,"abstract":"Since a long time, measuring the psychological status of subjects in a quantitative paradigm is a challenging problem in the scientific community. It is known that there is not a direct way to measure the psychological quantities [1], whereas an emerging methodology, i.e., computational psychophysiology (CPP), was introduced [2]. The core idea of CPP is to explore the link between the psychological quantities and the physiological quantities, which the latter ones can be measured via ubiquitous equipment (e.g., a braincomputer interface device). Psychiatric diseases are usually accompanied by abnormal psychological status, which can be objectively quantified by psychophysiological quantities. Evaluating psychiatric diseases is of great significance for mental health. With the fast development of artificial intelligence, big data, wearables, and the internet of things, we can observe successful achievements in finding quantitative methods for evaluating the degree of psychiatric diseases (e.g., depression) under the guidance of CPP. Nevertheless, the underlying mechanisms of these engineering milestones are still “up in the air” [3]. Investigating the fundamentals of CPP is a prerequisite for strengthening our power to extend the knowledge frontiers of mental health and benefit from clinical practice. D. R. Bach et al. proposed the concept of the “psychophysiological inverse problem,” claiming that psychologists use the peripheral physiological quantities to infer psychological quantities [4]. In particular, compared to other domains (e.g., intelligent disease diagnosis), understanding the mechanism of the mind could even benefit the development of novel clinical treatment methods for psychiatric disease. Therefore, the inverse problem tool cannot only facilitate a more personalised and precised medicine but also help discover the inherited characteristics of the psychophysiology. It is reasonable to think that the fundamental mechanism of CPP can be validated and/or interpreted by introducing the methodology of mathematical inverse problems. By the language of mathematical inverse problems [5], the computational psychophysiological problems can be formulated through an abstract equation,","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48581920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Survey on Design, Actuation, Modeling, and Control of Continuum Robot. 连续体机器人的设计、驱动、建模与控制综述
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2022-07-25 eCollection Date: 2022-01-01 DOI: 10.34133/2022/9754697
Jingyu Zhang, Qin Fang, Pingyu Xiang, Danying Sun, Yanan Xue, Rui Jin, Ke Qiu, Rong Xiong, Yue Wang, Haojian Lu
{"title":"A Survey on Design, Actuation, Modeling, and Control of Continuum Robot.","authors":"Jingyu Zhang, Qin Fang, Pingyu Xiang, Danying Sun, Yanan Xue, Rui Jin, Ke Qiu, Rong Xiong, Yue Wang, Haojian Lu","doi":"10.34133/2022/9754697","DOIUrl":"10.34133/2022/9754697","url":null,"abstract":"<p><p>In this paper, we describe the advances in the design, actuation, modeling, and control field of continuum robots. After decades of pioneering research, many innovative structural design and actuation methods have arisen. Untethered magnetic robots are a good example; its external actuation characteristic allows for miniaturization, and they have gotten a lot of interest from academics. Furthermore, continuum robots with proprioceptive abilities are also studied. In modeling, modeling approaches based on continuum mechanics and geometric shaping hypothesis have made significant progress after years of research. Geometric exact continuum mechanics yields apparent computing efficiency via discrete modeling when combined with numerical analytic methods such that many effective model-based control methods have been realized. In the control, closed-loop and hybrid control methods offer great accuracy and resilience of motion control when combined with sensor feedback information. On the other hand, the advancement of machine learning has made modeling and control of continuum robots easier. The data-driven modeling technique simplifies modeling and improves anti-interference and generalization abilities. This paper discusses the current development and challenges of continuum robots in the above fields and provides prospects for the future.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"1 1","pages":"9754697"},"PeriodicalIF":0.0,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11014731/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41376964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信