Neural Decoding for Intracortical Brain-Computer Interfaces.

IF 10.5 Q1 ENGINEERING, BIOMEDICAL
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2023-07-28 eCollection Date: 2023-01-01 DOI:10.34133/cbsystems.0044
Yuanrui Dong, Shirong Wang, Qiang Huang, Rune W Berg, Guanghui Li, Jiping He
{"title":"Neural Decoding for Intracortical Brain-Computer Interfaces.","authors":"Yuanrui Dong, Shirong Wang, Qiang Huang, Rune W Berg, Guanghui Li, Jiping He","doi":"10.34133/cbsystems.0044","DOIUrl":null,"url":null,"abstract":"<p><p>Brain-computer interfaces have revolutionized the field of neuroscience by providing a solution for paralyzed patients to control external devices and improve the quality of daily life. To accurately and stably control effectors, it is important for decoders to recognize an individual's motor intention from neural activity either by noninvasive or intracortical neural recording. Intracortical recording is an invasive way of measuring neural electrical activity with high temporal and spatial resolution. Herein, we review recent developments in neural signal decoding methods for intracortical brain-computer interfaces. These methods have achieved good performance in analyzing neural activity and controlling robots and prostheses in nonhuman primates and humans. For more complex paradigms in motor rehabilitation or other clinical applications, there remains more space for further improvements of decoders.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0044"},"PeriodicalIF":10.5000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10380541/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/cbsystems.0044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Brain-computer interfaces have revolutionized the field of neuroscience by providing a solution for paralyzed patients to control external devices and improve the quality of daily life. To accurately and stably control effectors, it is important for decoders to recognize an individual's motor intention from neural activity either by noninvasive or intracortical neural recording. Intracortical recording is an invasive way of measuring neural electrical activity with high temporal and spatial resolution. Herein, we review recent developments in neural signal decoding methods for intracortical brain-computer interfaces. These methods have achieved good performance in analyzing neural activity and controlling robots and prostheses in nonhuman primates and humans. For more complex paradigms in motor rehabilitation or other clinical applications, there remains more space for further improvements of decoders.

Abstract Image

Abstract Image

Abstract Image

皮层内脑机接口的神经解码
脑机接口为瘫痪病人控制外部设备和提高日常生活质量提供了解决方案,从而彻底改变了神经科学领域。为了准确、稳定地控制效应器,解码器必须通过无创或皮层内神经记录从神经活动中识别个人的运动意图。皮层内记录是一种具有高时间和空间分辨率的侵入性神经电活动测量方法。在此,我们回顾了皮层内脑机接口神经信号解码方法的最新进展。这些方法在分析非人灵长类动物和人类的神经活动以及控制机器人和假肢方面取得了良好的效果。对于更复杂的运动康复范例或其他临床应用,解码器仍有进一步改进的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信