{"title":"Structural Optimization of Microfluidic Chips for Enhancing Droplet Manipulation and Observation via Electrodynamics Simulation.","authors":"Yanfeng Zhao, Zhiqiang Zheng, Jiaxin Liu, Xinyi Dong, Haotian Yang, Anping Wu, Qing Shi, Huaping Wang","doi":"10.34133/cbsystems.0217","DOIUrl":"10.34133/cbsystems.0217","url":null,"abstract":"<p><p>Digital microfluidic chips (DMCs) have shown huge potential for biochemical analysis applications due to their excellent droplet manipulation capabilities. The driving force is a critical factor for characterizing and optimizing the performance of droplet manipulation. Conducting numerical analysis of the driving force is essential for DMC design, as it helps optimize the structural parameters. Despite advances in numerical analysis, evaluating driving forces in partially filled electrodes remains challenging. Here, we propose a versatile electrodynamics simulation model designed to analyze the driving forces of partially filled electrodes to optimize the structural parameters of DMCs. This model utilizes finite element analysis to determine the voltage distribution within the DMC and calculates the driving force acting on the droplets using the principles of virtual work. Using this electrodynamics simulation model, we evaluated the effects of various structural parameters, including the dielectric constant and thickness of the dielectric layer, the dielectric constant and conductivity of the droplet, and substrate spacing, on the droplet driving force. This evaluation helps to optimize the structural parameters and enhances the droplet manipulation of DMCs. Measurements of droplet acceleration demonstrated that the droplet acceleration on the partially filled electrode aligns with the simulated driving force trend, which verified the effectiveness of the proposed electrodynamics simulation model. We anticipate that the electrodynamics simulation model is capable of evaluating the driving force in partially filled electrodes within complex DMCs, offering unprecedented possibilities for future structural designs of DMCs.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"6 ","pages":"0217"},"PeriodicalIF":10.5,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884587/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143574762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joanna Filippi, Paola Casti, Valentina Lacconi, Gianni Antonelli, Michele D'Orazio, Giorgia Curci, Carlo Ticconi, Rocco Rago, Massimiliano De Luca, Alessandro Pecora, Arianna Mencattini, Steven L Neale, Luisa Campagnolo, Eugenio Martinelli
{"title":"ODEP-Based Robotic System for Micromanipulation and In-Flow Analysis of Primary Cells.","authors":"Joanna Filippi, Paola Casti, Valentina Lacconi, Gianni Antonelli, Michele D'Orazio, Giorgia Curci, Carlo Ticconi, Rocco Rago, Massimiliano De Luca, Alessandro Pecora, Arianna Mencattini, Steven L Neale, Luisa Campagnolo, Eugenio Martinelli","doi":"10.34133/cbsystems.0234","DOIUrl":"10.34133/cbsystems.0234","url":null,"abstract":"<p><p>The presence of cellular defects of multifactorial nature can be hard to characterize accurately and early due to the complex interplay of genetic, environmental, and lifestyle factors. With this study, by bridging optically-induced dielectrophoresis (ODEP), microfluidics, live-cell imaging, and machine learning, we provide the ground for devising a robotic micromanipulation and analysis system for single-cell phenotyping. Cells under the influence of nonuniform electric fields generated via ODEP can be recorded and measured. The induced responses obtained under time-variant ODEP stimulation reflect the cells' chemical, morphological, and structural characteristics in an automated, flexible, and label-free manner. By complementing the electrokinetic fingerprint of the cell centroid motion with data on the dynamics of electro-deformation and orientation, we show that subtle differences at the single-cell level can be elucidated. Specifically, here, we demonstrate, for the first time, the ability of the combined ODEP-based robotic and automatic analysis platform to discriminate between primary endometrial stromal cells obtained from fertile patients and patients with disrupted receptivity/selectivity equilibrium. When multiple cells were considered at the patient level, the performance achieved an average accuracy of 98%. Single-cell micro-operation and analysis systems may find a more general application in the clinical diagnosis and management of patients with pathological alterations at the cellular level.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"6 ","pages":"0234"},"PeriodicalIF":10.5,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087799/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144103191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongyong Zhang, Nan Huang, Sumin Bian, Mohamad Sawan
{"title":"Platinum Wire-Embedded Culturing Device for Interior Signal Recording from Lollipop-Shaped Neural Spheroids.","authors":"Hongyong Zhang, Nan Huang, Sumin Bian, Mohamad Sawan","doi":"10.34133/cbsystems.0220","DOIUrl":"10.34133/cbsystems.0220","url":null,"abstract":"<p><p>Three-dimensional (3D) neural cultures are increasingly recognized for their complexity and resemblance to in vivo neural microenvironments. In this paper, we present a novel 3D cell culturing and noninvasive characterization technique of neural spheroids. Based on embedded platinum wires, the cultured cells are lollipop-shaped spheroids where axons are extended and integrated around the embedded wires. Electrical microstimulation enhanced the connectivity between spheroids and demonstrated signal propagation among them. The resultant axonal elongation facilitated the formation of robust neural tracts interconnecting the neural spheroids. Variation of cells' density allows to adjust the spheroid's diameter, identifying 1 million cells as good number of cells for robust spheroid formation. Recordings of spheroid activities reveal higher-quality neural signal measurement from interior cells compared to those obtained from exterior cells. Viability assays confirmed the efficacy of the proposed culturing technique for sustained growth of neural spheroids over a 1-month period. The proposed spheroid culturing technique holds potential applications in various fields, such as development of brain organoids, which enables real-time interconnection characterization and sensing of environment conditions.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"6 ","pages":"0220"},"PeriodicalIF":10.5,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880574/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143569015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Yue, Huiying Yang, Yue Wang, Ning Jiang, Hongze Yin, Xiaoqi Lu, Na Liu, Yichun Xu
{"title":"A Vascularized Multilayer Chip Reveals Shear Stress-Induced Angiogenesis in Diverse Fluid Conditions.","authors":"Tao Yue, Huiying Yang, Yue Wang, Ning Jiang, Hongze Yin, Xiaoqi Lu, Na Liu, Yichun Xu","doi":"10.34133/cbsystems.0207","DOIUrl":"https://doi.org/10.34133/cbsystems.0207","url":null,"abstract":"<p><p>Tissues larger than 400 μm in size lacking microvascular networks cannot survive for long periods of time in vitro. The development of microfluidic technology provides an efficient research tool for constructing microvascular models in vitro. However, traditional single-layer microfluidic chips faced the limitation of spatial layout and could not provide diverse fluidic environments within a single chip. In this paper, we present a novel microfluidic chip design with a 3-layer configuration that utilizes a polycarbonate (PC) porous membrane to separate the culture fluid channels from the tissue chambers, featuring flexibly designable multitissue chambers. PC porous membranes act as the capillary in the vertical direction, enabling precise hydrogel patterning and successfully constructing a microfluidic environment suitable for microvascular tissue growth. The chip demonstrates the ability to build microvascular networks of different shapes such as triangle, rectangle, and inverted triangle on a single chip for more than 10 days. The microvascular networks cultured for 12 days were successfully perfused with 70-kDa fluorescein isothiocyanate, which indicated that the generated networks had good barrier properties. A correlation between tissue chamber shape and shear stress was demonstrated using COMSOL, and a preliminary validation of the flow direction of interstitial flow and the important effect of shear stress on microvascular growth was demonstrated by vascularization experiments. This flexible and scalable design is ideal for culturing multiple vascularized organ tissues on a single microfluidic chip, as well as for studying the effects of different fluidic factors on microvascular growth.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"6 ","pages":"0207"},"PeriodicalIF":10.5,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870090/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143544793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhaoxin Li, Ding Weng, Lei Chen, Yuan Ma, Zili Wang, Jiadao Wang
{"title":"Enhanced Digital Light Processing-Based One-Step 3-Dimensional Printing of Multifunctional Magnetic Soft Robot.","authors":"Zhaoxin Li, Ding Weng, Lei Chen, Yuan Ma, Zili Wang, Jiadao Wang","doi":"10.34133/cbsystems.0215","DOIUrl":"10.34133/cbsystems.0215","url":null,"abstract":"<p><p>Soft structures driven by magnetic fields exhibit the characteristics of being unencumbered and rapidly responsive, enabling the fabrication of various soft robots according to specific requirements. However, soft structures made from a single magnetic material cannot meet the multifunctional demands of practical scenarios, necessitating the development of soft robot fabrication technologies with composite structures of diverse materials. A novel enhanced digital light processing (DLP) 3-dimensional (3D) printing technology has been developed, capable of printing composite magnetic structures with different materials in a single step. Furthermore, a soft robot with a hard magnetic material-superparamagnetic material composite was designed and printed, demonstrating its thermal effect under high-frequency magnetic fields and the editability of the magnetic domains of the hard magnetic material. The robot exhibits a range of locomotive behaviors, including crawling, rolling, and swimming. Under the influence of a 1-Hz actuation magnetic field, the normalized velocities for these modes of motion are recorded as 0.31 body length per second for crawling, 1.88 body length per second for rolling, and 0.14 body length per second for swimming. The robot has demonstrated its capacity to navigate uneven terrain, surmount barriers, and engage in directed locomotion, along with the ability to capture and transport objects. Additionally, it has showcased swimming capabilities within environments characterized by low Reynolds numbers and high fluid viscosities, findings that corroborate simulation analyses. The multimaterial 3D printing technology introduced in this research presents extensive potential for the design and manufacturing of multifunctional soft robots.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"6 ","pages":"0215"},"PeriodicalIF":10.5,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143525240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhiyun Ma, Jieliang Zhao, Li Yu, Lulu Liang, Zhong Liu, Yongxia Gu, Jianing Wu, Wenzhong Wang, Shaoze Yan
{"title":"Piezoelectric Energy Harvesting from the Thorax Vibration of Freely Flying Bees.","authors":"Zhiyun Ma, Jieliang Zhao, Li Yu, Lulu Liang, Zhong Liu, Yongxia Gu, Jianing Wu, Wenzhong Wang, Shaoze Yan","doi":"10.34133/cbsystems.0210","DOIUrl":"10.34133/cbsystems.0210","url":null,"abstract":"<p><p>Insect cyborgs have been proposed for application in future rescue operations, environmental monitoring, and hazardous area surveys. An energy harvester for insect carrying is critical to the long-lasting life of insect cyborgs, and designing an energy harvester with superior energy output within the load capacity of tiny flying insects is very important. In this study, we measured the thorax vibration frequency of bees during loaded flight conditions. We propose a piezoelectric vibration energy harvester for bees that has a mass of only 46 mg and can achieve maximum effective output voltage and energy density of 5.66 V and 1.27 mW/cm<sup>3</sup>, respectively. The harvester has no marked effect on the bees' normal movement, which is verified by experiments of mounting the harvester on bees. These results indicate that the proposed harvester is expected to realize a self-power supply of tiny insect cyborgs.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"6 ","pages":"0210"},"PeriodicalIF":10.5,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861424/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143525272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Whole-Body Synergy-Based Balance Control for Quadruped Robots with Manipulators on Sloped Terrains.","authors":"Ru Kang, Huifeng Ning, Fei Meng, Zewen He","doi":"10.34133/cbsystems.0201","DOIUrl":"10.34133/cbsystems.0201","url":null,"abstract":"<p><p>A quadruped robot with a manipulator that combines dynamic motion and manipulation capabilities will greatly expand its application scenarios. However, the addition of the manipulator raises the center of mass of the quadruped robot, increasing complexity in motion control and posing new challenges for maintaining balance on sloped terrains. To address this, a balance control method based on whole-body synergy is proposed in this study, emphasizing adaptive adjustment of the robot system's overall balance through effective utilization of the manipulator's active motion. By establishing a mapping relationship between the manipulator and the robot's attitude angle under system equilibrium, the desired manipulator motion is guided by real-time estimates of terrain angles during motion, enhancing motion efficiency while ensuring robot balance. Furthermore, to enhance motion tracking accuracy, the optimization of system angular momentum and manipulator manipulability is incorporated into hierarchical optimization tasks, improving manipulator controllability and overall system performance. Simulation and experimental results demonstrate that the quadruped robot with a manipulator exhibits reduced velocity and attitude angle fluctuations, as well as smoother foot-end force dynamics during climbing motions with the addition of manipulator adaptive adjustment. These results validate the effectiveness and superiority of the manipulator-based adaptive adjustment strategy proposed in this paper.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"5 ","pages":"0201"},"PeriodicalIF":10.5,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087797/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144103109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-Section Magnetic Soft Robot with Multirobot Navigation System for Vasculature Intervention.","authors":"Zhengyang Li, Qingsong Xu","doi":"10.34133/cbsystems.0188","DOIUrl":"10.34133/cbsystems.0188","url":null,"abstract":"<p><p>Magnetic soft robots have recently become a promising technology that has been applied to minimally invasive cardiovascular surgery. This paper presents the analytical modeling of a novel multi-section magnetic soft robot (MS-MSR) with multi-curvature bending, which is maneuvered by an associated collaborative multirobot navigation system (CMNS) with magnetic actuation and ultrasound guidance targeted for intravascular intervention. The kinematic and dynamic analysis of the MS-MSR's telescopic motion is performed using the optimized Cosserat rod model by considering the effect of an external heterogeneous magnetic field, which is generated by a mobile magnetic actuation manipulator to adapt to complex steering scenarios. Meanwhile, an extracorporeal mobile ultrasound navigation manipulator is exploited to track the magnetic soft robot's distal tip motion to realize a closed-loop control. We also conduct a quadratic programming-based optimization scheme to synchronize the multi-objective task-space motion of CMNS with null-space projection. It allows the formulation of a comprehensive controller with motion priority for multirobot collaboration. Experimental results demonstrate that the proposed magnetic soft robot can be successfully navigated within the multi-bifurcation intravascular environment with a shape modeling error <math><mn>3.62</mn> <mo>±</mo> <msup><mn>1.28</mn> <mo>∘</mo></msup> </math> and a tip error of <math><mn>1.08</mn> <mo>±</mo> <mn>0.45</mn> <mspace></mspace> <mi>mm</mi></math> under the actuation of a CMNS through in vitro ultrasound-guided vasculature interventional tests.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"5 ","pages":"0188"},"PeriodicalIF":10.5,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602701/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in Biointegrated Wearable and Implantable Optoelectronic Devices for Cardiac Healthcare.","authors":"Cheng Li, Yangshuang Bian, Zhiyuan Zhao, Yunqi Liu, Yunlong Guo","doi":"10.34133/cbsystems.0172","DOIUrl":"10.34133/cbsystems.0172","url":null,"abstract":"<p><p>With the prevalence of cardiovascular disease, it is imperative that medical monitoring and treatment become more instantaneous and comfortable for patients. Recently, wearable and implantable optoelectronic devices can be seamlessly integrated into human body to enable physiological monitoring and treatment in an imperceptible and spatiotemporally unconstrained manner, opening countless possibilities for the intelligent healthcare paradigm. To achieve biointegrated cardiac healthcare, researchers have focused on novel strategies for the construction of flexible/stretchable optoelectronic devices and systems. Here, we overview the progress of biointegrated flexible and stretchable optoelectronics for wearable and implantable cardiac healthcare devices. Firstly, the device design is addressed, including the mechanical design, interface adhesion, and encapsulation strategies. Next, the practical applications of optoelectronic devices for cardiac physiological monitoring, cardiac optogenetics, and nongenetic stimulation are presented. Finally, an outlook on biointegrated flexible and stretchable optoelectronic devices and systems for intelligent cardiac healthcare is discussed.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"5 ","pages":"0172"},"PeriodicalIF":10.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486891/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yantao Xing, Kaiyuan Yang, Albert Lu, Ken Mackie, Feng Guo
{"title":"Sensors and Devices Guided by Artificial Intelligence for Personalized Pain Medicine.","authors":"Yantao Xing, Kaiyuan Yang, Albert Lu, Ken Mackie, Feng Guo","doi":"10.34133/cbsystems.0160","DOIUrl":"https://doi.org/10.34133/cbsystems.0160","url":null,"abstract":"<p><p>Personalized pain medicine aims to tailor pain treatment strategies for the specific needs and characteristics of an individual patient, holding the potential for improving treatment outcomes, reducing side effects, and enhancing patient satisfaction. Despite existing pain markers and treatments, challenges remain in understanding, detecting, and treating complex pain conditions. Here, we review recent engineering efforts in developing various sensors and devices for addressing challenges in the personalized treatment of pain. We summarize the basics of pain pathology and introduce various sensors and devices for pain monitoring, assessment, and relief. We also discuss advancements taking advantage of rapidly developing medical artificial intelligence (AI), such as AI-based analgesia devices, wearable sensors, and healthcare systems. We believe that these innovative technologies may lead to more precise and responsive personalized medicine, greatly improved patient quality of life, increased efficiency of medical systems, and reducing the incidence of addiction and substance use disorders.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"5 ","pages":"0160"},"PeriodicalIF":10.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11395709/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}