Cyborg and bionic systems (Washington, D.C.)最新文献

筛选
英文 中文
Advances in the Model Structure of In Vitro Vascularized Organ-on-a-Chip. 体外血管化器官芯片模型结构研究进展。
IF 10.5
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2024-04-25 eCollection Date: 2024-01-01 DOI: 10.34133/cbsystems.0107
Hongze Yin, Yue Wang, Na Liu, Songyi Zhong, Long Li, Quan Zhang, Zeyang Liu, Tao Yue
{"title":"Advances in the Model Structure of In Vitro Vascularized Organ-on-a-Chip.","authors":"Hongze Yin, Yue Wang, Na Liu, Songyi Zhong, Long Li, Quan Zhang, Zeyang Liu, Tao Yue","doi":"10.34133/cbsystems.0107","DOIUrl":"https://doi.org/10.34133/cbsystems.0107","url":null,"abstract":"<p><p>Microvasculature plays a crucial role in human physiology and is closely related to various human diseases. Building in vitro vascular networks is essential for studying vascular tissue behavior with repeatable morphology and signaling conditions. Engineered 3D microvascular network models, developed through advanced microfluidic-based techniques, provide accurate and reproducible platforms for studying the microvasculature in vitro, an essential component for designing organ-on-chips to achieve greater biological relevance. By optimizing the microstructure of microfluidic devices to closely mimic the in vivo microenvironment, organ-specific models with healthy and pathological microvascular tissues can be created. This review summarizes recent advancements in in vitro strategies for constructing microvascular tissue and microfluidic devices. It discusses the static vascularization chips' classification, structural characteristics, and the various techniques used to build them: growing blood vessels on chips can be either static or dynamic, and in vitro blood vessels can be grown in microchannels, elastic membranes, and hydrogels. Finally, the paper discusses the application scenarios and key technical issues of existing vascularization chips. It also explores the potential for a novel organoid chip vascularization approach that combines organoids and organ chips to generate better vascularization chips.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"5 ","pages":"0107"},"PeriodicalIF":10.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12063728/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144029711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic Soft Microrobot Design for Cell Grasping and Transportation. 用于细胞抓取和运输的磁性软微型机器人设计
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2024-04-25 eCollection Date: 2024-01-01 DOI: 10.34133/cbsystems.0109
Fanghao Wang, Youchao Zhang, Daoyuan Jin, Zhongliang Jiang, Yaqian Liu, Alois Knoll, Huanyu Jiang, Yibin Ying, Mingchuan Zhou
{"title":"Magnetic Soft Microrobot Design for Cell Grasping and Transportation.","authors":"Fanghao Wang, Youchao Zhang, Daoyuan Jin, Zhongliang Jiang, Yaqian Liu, Alois Knoll, Huanyu Jiang, Yibin Ying, Mingchuan Zhou","doi":"10.34133/cbsystems.0109","DOIUrl":"https://doi.org/10.34133/cbsystems.0109","url":null,"abstract":"<p><p>Manipulating cells at a small scale is widely acknowledged as a complex and challenging task, especially when it comes to cell grasping and transportation. Various precise methods have been developed to remotely control the movement of microrobots. However, the manipulation of micro-objects necessitates the use of end-effectors. This paper presents a study on the control of movement and grasping operations of a magnetic microrobot, utilizing only 3 pairs of electromagnetic coils. A specially designed microgripper is employed on the microrobot for efficient cell grasping and transportation. To ensure precise grasping, a bending deformation model of the microgripper is formulated and subsequently validated. To achieve precise and reliable transportation of cells to specific positions, an approach that combines an extended Kalman filter with a model predictive control method is adopted to accomplish the trajectory tracking task. Through experiments, we observe that by applying the proposed control strategy, the mean absolute error of path tracking is found to be less than 0.155 mm. Remarkably, this value accounts for only 1.55% of the microrobot's size, demonstrating the efficacy and accuracy of our control strategy. Furthermore, an experiment involving the grasping and transportation of a zebrafish embryonic cell (diameter: 800 μm) is successfully conducted. The results of this experiment not only validate the precision and effectiveness of the proposed microrobot and its associated models but also highlight its tremendous potential for cell manipulation in vitro and in vivo.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"5 ","pages":"0109"},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11052606/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140869636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MonoAux: Fully Exploiting Auxiliary Information and Uncertainty for Monocular 3D Object Detection. MonoAux:充分利用辅助信息和不确定性进行单目三维物体检测
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2024-03-27 eCollection Date: 2024-01-01 DOI: 10.34133/cbsystems.0097
Zhenglin Li, Wenbo Zheng, Le Yang, Liyan Ma, Yang Zhou, Yan Peng
{"title":"MonoAux: Fully Exploiting Auxiliary Information and Uncertainty for Monocular 3D Object Detection.","authors":"Zhenglin Li, Wenbo Zheng, Le Yang, Liyan Ma, Yang Zhou, Yan Peng","doi":"10.34133/cbsystems.0097","DOIUrl":"10.34133/cbsystems.0097","url":null,"abstract":"<p><p>Monocular 3D object detection plays a pivotal role in autonomous driving, presenting a formidable challenge by requiring the precise localization of 3D objects within a single image, devoid of depth information. Most existing methods in this domain fall short of harnessing the limited information available in monocular 3D detection tasks. They typically provide only a single detection outcome, omitting essential uncertainty analysis and result post-processing during model inference, thus limiting overall model performance. In this paper, we propose a comprehensive framework that maximizes information extraction from monocular images while encompassing diverse depth estimation and incorporating uncertainty analysis. Specifically, we mine additional information intrinsic to the monocular 3D detection task to augment supervision, thereby addressing the information scarcity challenge. Moreover, our framework handles depth estimation by recovering multiple sets of depth values from calculated visual heights. The final depth estimate and 3D confidence are determined through an uncertainty fusion process, effectively reducing inference errors. Furthermore, to address task weight allocation in multi-task training, we present a versatile training strategy tailored to monocular 3D detection. This approach leverages measurement indicators to monitor task progress, adaptively adjusting loss weights for different tasks. Experimental results on the KITTI and Waymo dataset confirm the effectiveness of our approach. The proposed method consistently provides enhanced performance across various difficulty levels compared to the original framework while maintaining real-time efficiency.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"5 ","pages":"0097"},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976585/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140320040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational Design of Bioactive Materials for Bone Hemostasis and Defect Repair. 骨止血及骨缺损修复生物活性材料的合理设计。
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2023-10-11 eCollection Date: 2023-01-01 DOI: 10.34133/cbsystems.0058
Yuqi Gai, Yue Yin, Ling Guan, Shengchang Zhang, Jiatian Chen, Junyuan Yang, Huaijuan Zhou, Jinhua Li
{"title":"Rational Design of Bioactive Materials for Bone Hemostasis and Defect Repair.","authors":"Yuqi Gai,&nbsp;Yue Yin,&nbsp;Ling Guan,&nbsp;Shengchang Zhang,&nbsp;Jiatian Chen,&nbsp;Junyuan Yang,&nbsp;Huaijuan Zhou,&nbsp;Jinhua Li","doi":"10.34133/cbsystems.0058","DOIUrl":"10.34133/cbsystems.0058","url":null,"abstract":"<p><p>Everyday unnatural events such as trauma, accidents, military conflict, disasters, and even medical malpractice create open wounds and massive blood loss, which can be life-threatening. Fractures and large bone defects are among the most common types of injuries. Traditional treatment methods usually involve rapid hemostasis and wound closure, which are convenient and fast but may result in various complications such as nerve injury, deep infection, vascular injury, and deep hematomas. To address these complications, various studies have been conducted on new materials that can be degraded in the body and reduce inflammation and abscesses in the surgical area. This review presents the latest research progress in biomaterials for bone hemostasis and repair. The mechanisms of bone hemostasis and bone healing are first introduced and then principles for rational design of biomaterials are summarized. After providing representative examples of hemostatic biomaterials for bone repair, future challenges and opportunities in the field are proposed.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0058"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566342/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41221467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Review of Energy Supply for Biomachine Hybrid Robots. 生物机械混合机器人能源供应综述。
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2023-09-26 eCollection Date: 2023-01-01 DOI: 10.34133/cbsystems.0053
Zhiyun Ma, Jieliang Zhao, Li Yu, Mengdan Yan, Lulu Liang, Xiangbing Wu, Mengdi Xu, Wenzhong Wang, Shaoze Yan
{"title":"A Review of Energy Supply for Biomachine Hybrid Robots.","authors":"Zhiyun Ma,&nbsp;Jieliang Zhao,&nbsp;Li Yu,&nbsp;Mengdan Yan,&nbsp;Lulu Liang,&nbsp;Xiangbing Wu,&nbsp;Mengdi Xu,&nbsp;Wenzhong Wang,&nbsp;Shaoze Yan","doi":"10.34133/cbsystems.0053","DOIUrl":"https://doi.org/10.34133/cbsystems.0053","url":null,"abstract":"<p><p>Biomachine hybrid robots have been proposed for important scenarios, such as wilderness rescue, ecological monitoring, and hazardous area surveying. The energy supply unit used to power the control backpack carried by these robots determines their future development and practical application. Current energy supply devices for control backpacks are mainly chemical batteries. To achieve self-powered devices, researchers have developed solar energy, bioenergy, biothermal energy, and biovibration energy harvesters. This review provides an overview of research in the development of chemical batteries and self-powered devices for biomachine hybrid robots. Various batteries for different biocarriers and the entry points for the design of self-powered devices are outlined in detail. Finally, an overview of the future challenges and possible directions for the development of energy supply devices used to biomachine hybrid robots is provided.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0053"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521967/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41171556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emulation of Brain Metabolic Activities Based on a Dynamically Controllable Optical Phantom. 基于动态可控光体的脑代谢活动仿真
IF 10.5
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2023-09-13 eCollection Date: 2023-01-01 DOI: 10.34133/cbsystems.0047
Yuxiang Lin, Cheng Chen, Zhouchen Ma, Nabil Sabor, Yanyan Wei, Tianhong Zhang, Mohamad Sawan, Guoxing Wang, Jian Zhao
{"title":"Emulation of Brain Metabolic Activities Based on a Dynamically Controllable Optical Phantom.","authors":"Yuxiang Lin, Cheng Chen, Zhouchen Ma, Nabil Sabor, Yanyan Wei, Tianhong Zhang, Mohamad Sawan, Guoxing Wang, Jian Zhao","doi":"10.34133/cbsystems.0047","DOIUrl":"10.34133/cbsystems.0047","url":null,"abstract":"<p><p>This paper presents a dynamic optical phantom for the simulation of metabolic activities in the brain, and a linear equivalent model is built for control voltage versus substance concentration. A solid-solid dynamic optical phantom is realized by using liquid crystal film as a voltage-controlled light intensity regulator on the surface of basic phantom, which uses epoxy resin as matrix material and nanometer carbon powder and titanium dioxide powder as absorption and scattering dopants, respectively. The dynamic phantom could mimic near-infrared spectrum (NIRS) signals with sampling rate up to 10 Hz, and the maximum simulation errors for oxy-hemoglobin and deoxy-hemoglobin concentrations varying in the range of 1 μmol/l are 7.0% and 17.9%, respectively. Compared with similar solid biomimetic phantoms, the adjustable mimic substance concentration range is extended by an order of magnitude, which meets the simulation requirements of most brain NIRS signals.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"1 1","pages":"0047"},"PeriodicalIF":10.5,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651414/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42099080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated Design Fabrication and Control of a Bioinspired Multimaterial Soft Robotic Hand. 生物启发多材料软机械手的集成设计制造与控制
IF 10.5
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2023-08-08 eCollection Date: 2023-01-01 DOI: 10.34133/cbsystems.0051
Samuel Alves, Mihail Babcinschi, Afonso Silva, Diogo Neto, Diogo Fonseca, Pedro Neto
{"title":"Integrated Design Fabrication and Control of a Bioinspired Multimaterial Soft Robotic Hand.","authors":"Samuel Alves, Mihail Babcinschi, Afonso Silva, Diogo Neto, Diogo Fonseca, Pedro Neto","doi":"10.34133/cbsystems.0051","DOIUrl":"10.34133/cbsystems.0051","url":null,"abstract":"<p><p>Machines that mimic humans have inspired scientists for centuries. Bioinspired soft robotic hands are a good example of such an endeavor, featuring intrinsic material compliance and continuous motion to deal with uncertainty and adapt to unstructured environments. Recent research led to impactful achievements in functional designs, modeling, fabrication, and control of soft robots. Nevertheless, the full realization of life-like movements is still challenging to achieve, often based on trial-and-error considerations from design to fabrication, consuming time and resources. In this study, a soft robotic hand is proposed, composed of soft actuator cores and an exoskeleton, featuring a multimaterial design aided by finite element analysis (FEA) to define the hand geometry and promote finger's bendability. The actuators are fabricated using molding, and the exoskeleton is 3D-printed in a single step. An ON-OFF controller keeps the set fingers' inner pressures related to specific bending angles, even in the presence of leaks. The FEA numerical results were validated by experimental tests, as well as the ability of the hand to grasp objects with different shapes, weights, and sizes. This integrated solution will make soft robotic hands more available to people, at a reduced cost, avoiding the time-consuming design-fabrication trial-and-error processes.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0051"},"PeriodicalIF":10.5,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10408382/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9973572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioprinting Methods for Fabricating In Vitro Tubular Blood Vessel Models. 制造体外管状血管模型的生物打印方法。
IF 10.5
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2023-08-01 eCollection Date: 2023-01-01 DOI: 10.34133/cbsystems.0043
Seon-Jin Kim, Min-Gyun Kim, Jangho Kim, Jessie S Jeon, Jinsoo Park, Hee-Gyeong Yi
{"title":"Bioprinting Methods for Fabricating In Vitro Tubular Blood Vessel Models.","authors":"Seon-Jin Kim, Min-Gyun Kim, Jangho Kim, Jessie S Jeon, Jinsoo Park, Hee-Gyeong Yi","doi":"10.34133/cbsystems.0043","DOIUrl":"10.34133/cbsystems.0043","url":null,"abstract":"<p><p>Dysfunctional blood vessels are implicated in various diseases, including cardiovascular diseases, neurodegenerative diseases, and cancer. Several studies have attempted to prevent and treat vascular diseases and understand interactions between these diseases and blood vessels across different organs and tissues. Initial studies were conducted using 2-dimensional (2D) in vitro and animal models. However, these models have difficulties in mimicking the 3D microenvironment in human, simulating kinetics related to cell activities, and replicating human pathophysiology; in addition, 3D models involve remarkably high costs. Thus, in vitro bioengineered models (BMs) have recently gained attention. BMs created through biofabrication based on tissue engineering and regenerative medicine are breakthrough models that can overcome limitations of 2D and animal models. They can also simulate the natural microenvironment in a patient- and target-specific manner. In this review, we will introduce 3D bioprinting methods for fabricating bioengineered blood vessel models, which can serve as the basis for treating and preventing various vascular diseases. Additionally, we will describe possible advancements from tubular to vascular models. Last, we will discuss specific applications, limitations, and future perspectives of fabricated BMs.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0043"},"PeriodicalIF":10.5,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393580/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9987113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural Decoding for Intracortical Brain-Computer Interfaces. 皮层内脑机接口的神经解码
IF 10.5
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2023-07-28 eCollection Date: 2023-01-01 DOI: 10.34133/cbsystems.0044
Yuanrui Dong, Shirong Wang, Qiang Huang, Rune W Berg, Guanghui Li, Jiping He
{"title":"Neural Decoding for Intracortical Brain-Computer Interfaces.","authors":"Yuanrui Dong, Shirong Wang, Qiang Huang, Rune W Berg, Guanghui Li, Jiping He","doi":"10.34133/cbsystems.0044","DOIUrl":"10.34133/cbsystems.0044","url":null,"abstract":"<p><p>Brain-computer interfaces have revolutionized the field of neuroscience by providing a solution for paralyzed patients to control external devices and improve the quality of daily life. To accurately and stably control effectors, it is important for decoders to recognize an individual's motor intention from neural activity either by noninvasive or intracortical neural recording. Intracortical recording is an invasive way of measuring neural electrical activity with high temporal and spatial resolution. Herein, we review recent developments in neural signal decoding methods for intracortical brain-computer interfaces. These methods have achieved good performance in analyzing neural activity and controlling robots and prostheses in nonhuman primates and humans. For more complex paradigms in motor rehabilitation or other clinical applications, there remains more space for further improvements of decoders.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0044"},"PeriodicalIF":10.5,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10380541/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9963326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-Frequency Coupling and Intelligent Neuromodulation. 跨频耦合与智能神经调制
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2023-05-31 eCollection Date: 2023-01-01 DOI: 10.34133/cbsystems.0034
Chien-Hung Yeh, Chuting Zhang, Wenbin Shi, Men-Tzung Lo, Gerd Tinkhauser, Ashwini Oswal
{"title":"Cross-Frequency Coupling and Intelligent Neuromodulation.","authors":"Chien-Hung Yeh, Chuting Zhang, Wenbin Shi, Men-Tzung Lo, Gerd Tinkhauser, Ashwini Oswal","doi":"10.34133/cbsystems.0034","DOIUrl":"10.34133/cbsystems.0034","url":null,"abstract":"<p><p>Cross-frequency coupling (CFC) reflects (nonlinear) interactions between signals of different frequencies. Evidence from both patient and healthy participant studies suggests that CFC plays an essential role in neuronal computation, interregional interaction, and disease pathophysiology. The present review discusses methodological advances and challenges in the computation of CFC with particular emphasis on potential solutions to spurious coupling, inferring intrinsic rhythms in a targeted frequency band, and causal interferences. We specifically focus on the literature exploring CFC in the context of cognition/memory tasks, sleep, and neurological disorders, such as Alzheimer's disease, epilepsy, and Parkinson's disease. Furthermore, we highlight the implication of CFC in the context and for the optimization of invasive and noninvasive neuromodulation and rehabilitation. Mainly, CFC could support advancing the understanding of the neurophysiology of cognition and motor control, serve as a biomarker for disease symptoms, and leverage the optimization of therapeutic interventions, e.g., closed-loop brain stimulation. Despite the evident advantages of CFC as an investigative and translational tool in neuroscience, further methodological improvements are required to facilitate practical and correct use in cyborg and bionic systems in the field.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0034"},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10231647/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9559675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信