超声定位显微镜在评估2型糖尿病进展中的应用。

IF 10.5 Q1 ENGINEERING, BIOMEDICAL
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2025-03-10 eCollection Date: 2025-01-01 DOI:10.34133/cbsystems.0117
Tao Zhang, Jipeng Yan, Xinhuan Zhou, Bihan Wu, Chao Zhang, Mengxing Tang, Pintong Huang
{"title":"超声定位显微镜在评估2型糖尿病进展中的应用。","authors":"Tao Zhang, Jipeng Yan, Xinhuan Zhou, Bihan Wu, Chao Zhang, Mengxing Tang, Pintong Huang","doi":"10.34133/cbsystems.0117","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 diabetes is considered as a chronic inflammatory disease in which the dense microvasculature reorganizes with disease progression and is highly correlated with β cell mass and islet function. In this study, we constructed rat models of type 2 diabetes and used ultrasound localization microscopy (ULM) imaging to noninvasively map the pancreatic microvasculature at microscopy resolution in vivo to reflect β cell loss and islet function deterioration, and evaluate the efficacy after anti-cytokine immunotherapy. It was unveiled that ULM morphological and hemodynamic parameters have a strong link with β cell loss and deterioration of pancreatic islet function. This correlation aligns with the observed pathological alterations in the microvessels of islet and demonstrated that ULM can effectively mirror the functionality of β cells during rapid fluctuations in blood glucose levels by observing changes in mean velocity. Furthermore, it was revealed that treatment with anti-cytokine immunotherapy enhances the function and health of β cells by restoring the microvascular environment. Remarkable improvements in vessel morphology (measured by fractal dimension) and hemodynamics (indicated by mean velocity and vessel density) were noted following the anti-cytokine immunotherapy, signifying a significant enhancement at the treatment's conclusion (<i>P</i> < 0.05). These observations suggested that ULM technology holds promise as a visible and efficient tool for monitoring the effectiveness of anti-cytokine immunotherapy in managing type 2 diabetes. Pancreatic microvessel-based ULM may serve as a novel noninvasive method to assess β cells, providing a valuable clinical tool for tracking the progression of type 2 diabetes.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"6 ","pages":"0117"},"PeriodicalIF":10.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893074/pdf/","citationCount":"0","resultStr":"{\"title\":\"Application of Ultrasound Localization Microscopy in Evaluating the Type 2 Diabetes Progression.\",\"authors\":\"Tao Zhang, Jipeng Yan, Xinhuan Zhou, Bihan Wu, Chao Zhang, Mengxing Tang, Pintong Huang\",\"doi\":\"10.34133/cbsystems.0117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Type 2 diabetes is considered as a chronic inflammatory disease in which the dense microvasculature reorganizes with disease progression and is highly correlated with β cell mass and islet function. In this study, we constructed rat models of type 2 diabetes and used ultrasound localization microscopy (ULM) imaging to noninvasively map the pancreatic microvasculature at microscopy resolution in vivo to reflect β cell loss and islet function deterioration, and evaluate the efficacy after anti-cytokine immunotherapy. It was unveiled that ULM morphological and hemodynamic parameters have a strong link with β cell loss and deterioration of pancreatic islet function. This correlation aligns with the observed pathological alterations in the microvessels of islet and demonstrated that ULM can effectively mirror the functionality of β cells during rapid fluctuations in blood glucose levels by observing changes in mean velocity. Furthermore, it was revealed that treatment with anti-cytokine immunotherapy enhances the function and health of β cells by restoring the microvascular environment. Remarkable improvements in vessel morphology (measured by fractal dimension) and hemodynamics (indicated by mean velocity and vessel density) were noted following the anti-cytokine immunotherapy, signifying a significant enhancement at the treatment's conclusion (<i>P</i> < 0.05). These observations suggested that ULM technology holds promise as a visible and efficient tool for monitoring the effectiveness of anti-cytokine immunotherapy in managing type 2 diabetes. Pancreatic microvessel-based ULM may serve as a novel noninvasive method to assess β cells, providing a valuable clinical tool for tracking the progression of type 2 diabetes.</p>\",\"PeriodicalId\":72764,\"journal\":{\"name\":\"Cyborg and bionic systems (Washington, D.C.)\",\"volume\":\"6 \",\"pages\":\"0117\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893074/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cyborg and bionic systems (Washington, D.C.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/cbsystems.0117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/cbsystems.0117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

2型糖尿病被认为是一种慢性炎症性疾病,其致密微血管随着疾病进展而重组,并与β细胞质量和胰岛功能高度相关。本研究构建2型糖尿病大鼠模型,采用超声定位显微镜(ULM)成像技术,在体内显微镜分辨率下无创绘制胰腺微血管图,反映β细胞丢失和胰岛功能恶化,并评估抗细胞因子免疫治疗后的疗效。结果表明,ULM形态学和血流动力学参数与胰岛β细胞损失和功能恶化密切相关。这种相关性与观察到的胰岛微血管的病理改变一致,并表明ULM可以通过观察平均流速的变化有效地反映血糖水平快速波动时β细胞的功能。此外,抗细胞因子免疫治疗通过修复微血管环境来增强β细胞的功能和健康。抗细胞因子免疫治疗后血管形态(分形维数测量)和血流动力学(平均流速和血管密度表示)显著改善,治疗结束时显着增强(P < 0.05)。这些观察结果表明,ULM技术有望成为监测抗细胞因子免疫治疗治疗2型糖尿病有效性的有效工具。基于胰腺微血管的ULM可能作为一种新的无创评估β细胞的方法,为跟踪2型糖尿病的进展提供了有价值的临床工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Ultrasound Localization Microscopy in Evaluating the Type 2 Diabetes Progression.

Type 2 diabetes is considered as a chronic inflammatory disease in which the dense microvasculature reorganizes with disease progression and is highly correlated with β cell mass and islet function. In this study, we constructed rat models of type 2 diabetes and used ultrasound localization microscopy (ULM) imaging to noninvasively map the pancreatic microvasculature at microscopy resolution in vivo to reflect β cell loss and islet function deterioration, and evaluate the efficacy after anti-cytokine immunotherapy. It was unveiled that ULM morphological and hemodynamic parameters have a strong link with β cell loss and deterioration of pancreatic islet function. This correlation aligns with the observed pathological alterations in the microvessels of islet and demonstrated that ULM can effectively mirror the functionality of β cells during rapid fluctuations in blood glucose levels by observing changes in mean velocity. Furthermore, it was revealed that treatment with anti-cytokine immunotherapy enhances the function and health of β cells by restoring the microvascular environment. Remarkable improvements in vessel morphology (measured by fractal dimension) and hemodynamics (indicated by mean velocity and vessel density) were noted following the anti-cytokine immunotherapy, signifying a significant enhancement at the treatment's conclusion (P < 0.05). These observations suggested that ULM technology holds promise as a visible and efficient tool for monitoring the effectiveness of anti-cytokine immunotherapy in managing type 2 diabetes. Pancreatic microvessel-based ULM may serve as a novel noninvasive method to assess β cells, providing a valuable clinical tool for tracking the progression of type 2 diabetes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信