Earthworm-Inspired Multimodal Pneumatic Continuous Soft Robot Enhanced by Winding Transmission.

IF 10.5 Q1 ENGINEERING, BIOMEDICAL
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2025-03-19 eCollection Date: 2025-01-01 DOI:10.34133/cbsystems.0204
Jianbin Liu, Pengcheng Li, Zhihan Huang, Haitao Liu, Tian Huang
{"title":"Earthworm-Inspired Multimodal Pneumatic Continuous Soft Robot Enhanced by Winding Transmission.","authors":"Jianbin Liu, Pengcheng Li, Zhihan Huang, Haitao Liu, Tian Huang","doi":"10.34133/cbsystems.0204","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents an earthworm-inspired multimodal pneumatic continuous soft robot enhanced by wire-winding transmission. First, a derived overlapped continuous control law based on multiple peristaltic waves is introduced to effectively improve the motion performance of the robot. Second, by applying the wire-winding transmission method, the extension of one segment is simultaneously transformed into the contraction of other segments, achieving coordinated deformation and making it more similar to real earthworms. In addition, an autonomous obstacle-avoidance control strategy based on contact force sensing is developed to enhance the environmental adaptability of the robot. Based on these methods, an earthworm-inspired soft robot that can perform multimodal movements with autonomous obstacle-avoidance ability and enhanced motion efficiency is developed. A series of experiments including in- and cross-plane crawling, obstacle avoidance steering, and pipeline crawling are conducted to validate the robot's multimodal motion capabilities. The robot can achieve a speed of 6.65 mm/s (36.0 × 10<sup>-3</sup> bl/s) during in-plane crawling movement and 1.66 mm/s (8.97 × 10<sup>-3</sup> bl/s) during pipeline crawling movement. In terms of the in-plane crawling speed, the robot surpasses other robots of the same type. In conclusion, the robot's multimodal capabilities and enhanced motion efficiency demonstrate superior overall performance, and the robot has good potential for medical and industrial applications.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"6 ","pages":"0204"},"PeriodicalIF":10.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919822/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/cbsystems.0204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an earthworm-inspired multimodal pneumatic continuous soft robot enhanced by wire-winding transmission. First, a derived overlapped continuous control law based on multiple peristaltic waves is introduced to effectively improve the motion performance of the robot. Second, by applying the wire-winding transmission method, the extension of one segment is simultaneously transformed into the contraction of other segments, achieving coordinated deformation and making it more similar to real earthworms. In addition, an autonomous obstacle-avoidance control strategy based on contact force sensing is developed to enhance the environmental adaptability of the robot. Based on these methods, an earthworm-inspired soft robot that can perform multimodal movements with autonomous obstacle-avoidance ability and enhanced motion efficiency is developed. A series of experiments including in- and cross-plane crawling, obstacle avoidance steering, and pipeline crawling are conducted to validate the robot's multimodal motion capabilities. The robot can achieve a speed of 6.65 mm/s (36.0 × 10-3 bl/s) during in-plane crawling movement and 1.66 mm/s (8.97 × 10-3 bl/s) during pipeline crawling movement. In terms of the in-plane crawling speed, the robot surpasses other robots of the same type. In conclusion, the robot's multimodal capabilities and enhanced motion efficiency demonstrate superior overall performance, and the robot has good potential for medical and industrial applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信