Biomimetic Peripheral Nerve Stimulation Promotes the Rat Hindlimb Motion Modulation in Stepping: An Experimental Analysis.

IF 10.5 Q1 ENGINEERING, BIOMEDICAL
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2024-07-04 eCollection Date: 2024-01-01 DOI:10.34133/cbsystems.0131
Pengcheng Xi, Qingyu Yao, Yafei Liu, Jiping He, Rongyu Tang, Yiran Lang
{"title":"Biomimetic Peripheral Nerve Stimulation Promotes the Rat Hindlimb Motion Modulation in Stepping: An Experimental Analysis.","authors":"Pengcheng Xi, Qingyu Yao, Yafei Liu, Jiping He, Rongyu Tang, Yiran Lang","doi":"10.34133/cbsystems.0131","DOIUrl":null,"url":null,"abstract":"<p><p>Peripheral nerve stimulation is an effective neuromodulation method in patients with lower extremity movement disorders caused by stroke, spinal cord injury, or other diseases. However, most current studies on rehabilitation using sciatic nerve stimulation focus solely on ankle motor regulation through stimulation of common peroneal and tibial nerves. Using the electrical nerve stimulation method, we here achieved muscle control via different sciatic nerve branches to facilitate the regulation of lower limb movements during stepping and standing. A map of relationships between muscles and nerve segments was established to artificially activate specific nerve fibers with the biomimetic stimulation waveform. Then, characteristic curves depicting the relationship between neural electrical stimulation intensity and joint control were established. Finally, by testing the selected stimulation parameters in anesthetized rats, we confirmed that single-cathode extraneural electrical stimulation could activate combined movements to promote lower limb movements. Thus, this method is effective and reliable for use in treatment for improving and rehabilitating lower limb motor dysfunction.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"5 ","pages":"0131"},"PeriodicalIF":10.5000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223769/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/cbsystems.0131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Peripheral nerve stimulation is an effective neuromodulation method in patients with lower extremity movement disorders caused by stroke, spinal cord injury, or other diseases. However, most current studies on rehabilitation using sciatic nerve stimulation focus solely on ankle motor regulation through stimulation of common peroneal and tibial nerves. Using the electrical nerve stimulation method, we here achieved muscle control via different sciatic nerve branches to facilitate the regulation of lower limb movements during stepping and standing. A map of relationships between muscles and nerve segments was established to artificially activate specific nerve fibers with the biomimetic stimulation waveform. Then, characteristic curves depicting the relationship between neural electrical stimulation intensity and joint control were established. Finally, by testing the selected stimulation parameters in anesthetized rats, we confirmed that single-cathode extraneural electrical stimulation could activate combined movements to promote lower limb movements. Thus, this method is effective and reliable for use in treatment for improving and rehabilitating lower limb motor dysfunction.

仿生外周神经刺激促进大鼠后肢在迈步中的运动调节:实验分析
对于因中风、脊髓损伤或其他疾病导致下肢运动障碍的患者来说,周围神经刺激是一种有效的神经调节方法。然而,目前大多数利用坐骨神经刺激进行康复治疗的研究仅侧重于通过刺激腓总神经和胫总神经来调节踝关节运动。在此,我们利用神经电刺激方法,通过不同的坐骨神经分支实现肌肉控制,以促进步态和站立时下肢运动的调节。我们建立了肌肉与神经节段之间的关系图,利用生物模拟刺激波形人为激活特定神经纤维。然后,建立了描述神经电刺激强度与关节控制之间关系的特征曲线。最后,通过在麻醉大鼠体内测试选定的刺激参数,我们证实单阴极硬膜外电刺激可以激活联合运动,从而促进下肢运动。因此,这种方法在改善和康复下肢运动功能障碍的治疗中是有效和可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信