Biomedical materials (Bristol, England)最新文献

筛选
英文 中文
Electrophoretic deposition of chitosan/gelatin/hydroxyapatite nanocomposite coatings on 316L stainless steel for biomedical applications.
Biomedical materials (Bristol, England) Pub Date : 2024-11-29 DOI: 10.1088/1748-605X/ad98d6
Ali Mohammadsadegh, Saeed Reza Allahkaram, Mehrnaz Gharagozlou
{"title":"Electrophoretic deposition of chitosan/gelatin/hydroxyapatite nanocomposite coatings on 316L stainless steel for biomedical applications.","authors":"Ali Mohammadsadegh, Saeed Reza Allahkaram, Mehrnaz Gharagozlou","doi":"10.1088/1748-605X/ad98d6","DOIUrl":"https://doi.org/10.1088/1748-605X/ad98d6","url":null,"abstract":"<p><p>In addition to the basic and main parts of hospital equipment, 316L stainless steel is widely utilized in futures such as nails and screws, wires and medical bone clips, dental implants, heart springs (stents), needles, surgical scissors, etc. In the present study, the electrophoretic deposition of a composite based on chitosan, gelatin, nano and microparticles of hydroxyapatite on a 316L stainless steel substrate was investigated. Hydroxyapatite particles are added to it due to the ossification abilities of steel and due to an enhanced adhesion and bone production, chitosan and biocompatible gelatin polymer particles were also added to hydroxyapatite. These particles were mixed in an ethanol/deionized water/acetic acid solution to create a suspension for the electrophoretic procedure. A mixture of 5 g/L of hydroxyapatite, 0.5 g/L of chitosan, and 1 g/L were present in the suspension. The best coating time was 1200s, and the best voltage was 30V. The high density of the hydroxyapatite particles in the chitosan/gelatin polymer matrix was seen in scanning electron microscopy (SEM) pictures. Additionally, the outcomes of the immersing samples in the simulated body fluid (SBF) were evaluated, and the results revealed that, after 14 days, hydroxyapatite nanoparticles grew more rapidly than microparticles. The presence of chitosan, gelatin, and hydroxyapatite in the coating was verified by energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) and Potentiodynamic polarization in Phosphate-buffered saline (PBS) were used to assess the corrosion results. In comparison to the bare sample, the corrosion resistance of the coated sample increased from 1.22×105 to 1.22×105 Ω.cm2 under best circumstances, according to EIS results. Additionally, in the polarization test, the corrosion potential increased from -225.24 to -157.01 mV (vs. SCE) and the corrosion current dropped from 2.159 to 1.201 µA/cm2.&#xD.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142755368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of triple-helical recombinant collagen-silver hybrid nanofibers for anti-methicillin-resistantStaphylococcus aureus(MRSA) applications. 开发用于抗耐甲氧西林金黄色葡萄球菌(MRSA)的三重螺旋重组胶原-银混合纳米纤维。
Biomedical materials (Bristol, England) Pub Date : 2024-11-28 DOI: 10.1088/1748-605X/ad95d3
Caihong Fu, Jianrui Ma, Guangyu Liu, Yirui Fan, Nannan Wei, Jianxi Xiao
{"title":"Development of triple-helical recombinant collagen-silver hybrid nanofibers for anti-methicillin-resistant<i>Staphylococcus aureus</i>(MRSA) applications.","authors":"Caihong Fu, Jianrui Ma, Guangyu Liu, Yirui Fan, Nannan Wei, Jianxi Xiao","doi":"10.1088/1748-605X/ad95d3","DOIUrl":"10.1088/1748-605X/ad95d3","url":null,"abstract":"<p><p>The escalating threat of healthcare-associated infections highlights the urgent need for biocompatible antibacterial materials that effectively combat drug-resistant pathogens. In this study, we present a novel fabrication method for triple-helical recombinant collagen (THRC)-silver hybrid nanofibers, specifically designed for anti-methicillin-resistant<i>staphylococcus aureus</i>(MRSA) applications. Utilizing a silver-mediated crosslinking strategy, we harness a low-power 38 W lamp to enable silver ions (Ag<sup>+</sup>) to mediate crosslinking across various proteins. Mechanistic insights reveal the pivotal role of nine amino acids in facilitating this reaction. The THRC maintains its native structure, forming well-ordered nanofibers, while other globular proteins form a distinctive network-like structure. THRC also serves as a reducing and dispersing agent, facilitating the<i>in situ</i>synthesis of highly dispersed silver nanoparticles (AgNPs) (∼7 nm in diameter) within the nanofibers. Systematic investigation of the reaction conditions between THRC and Ag<sup>+</sup>demonstrates the versatility of this novel approach for nanofiber fabrication. The incorporation of AgNPs imparts exceptional antibacterial activity to the THRC/AgNPs nanofibers, exhibiting a minimum inhibitory concentration of 19.2 mg l<sup>-1</sup>and a minimum bactericidal concentration of 153.6 mg l<sup>-1</sup>against MRSA. This innovative approach holds significant potential for developing antibacterial protein-based biomaterials for infection management in wound healing and other biomedical applications.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142689858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid poly(lactide-co-glycolide) membranes incorporated with Doxycycline-loaded copper-based metal-organic nanosheets as antibacterial platforms. 含有多西环素的铜基金属有机纳米片的聚乳酸-聚乙二醇杂化膜作为抗菌平台。
Biomedical materials (Bristol, England) Pub Date : 2024-11-27 DOI: 10.1088/1748-605X/ad906b
Ayse Gunyakti Mujtaba, Berna Topuz, Ayşe Karakeçili
{"title":"Hybrid poly(lactide-co-glycolide) membranes incorporated with Doxycycline-loaded copper-based metal-organic nanosheets as antibacterial platforms.","authors":"Ayse Gunyakti Mujtaba, Berna Topuz, Ayşe Karakeçili","doi":"10.1088/1748-605X/ad906b","DOIUrl":"10.1088/1748-605X/ad906b","url":null,"abstract":"<p><p>The rise of antimicrobial resistance necessitates innovative strategies to combat persistent infections. Metal-organic frameworks (MOFs) have attracted significant attention as antibiotic carriers due to their high drug loading capacity and structural adaptability. In particular, 2D MOF nanosheets are emerging as a notable alternative to their traditional 3D relatives due to their remarkable advantages in enhanced surface area, flexibility and exposed active region properties. Herein, we synthesized 2D copper 1,4-benzendicarboxylate (CuBDC) nanosheets and utilized them as a carrier and controlled release system for Doxycycline (Doxy@CuBDC), for the first time. The Doxy@CuBDC nanosheets were subsequently incorporated into Poly(lactic-co-glycolic acid) (PLGA) electrospun membranes (Doxy@CuBDC/PLGA). The resultant bioactive fibrous membranes exhibited double-barrier controlled release properties, extending the Doxy release up to ∼9 d at pH 7.4 and 5.5. Significant inhibitory effects against<i>Staphylococcus aureus</i>and<i>Escherichia coli</i>were observed. The morphological analyses revealed the deformed bacterial cell structures on Doxy@CuBDC/PLGA membranes that indicates potent bactericidal activity. Furthermore, cytotoxicity assays demonstrated the non-toxic nature of the fabricated membranes, underscoring their potential use for biomedical applications. Overall, the hybrid antibacterial PLGA membranes present a promising strategy for combating microbial infections while maintaining biocompatibility and offer a versatile approach for biomedical material design and surface coatings (e.g. wound dressings, implants).</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sodium alginate based fast swelling nanogels for solubility enhancement of chlorthalidone; synthesis, characterization and biosafety evaluation. 基于海藻酸钠的快速溶胀纳米凝胶用于提高氯酞酮的溶解度;合成、表征和生物安全性评价。
Biomedical materials (Bristol, England) Pub Date : 2024-11-27 DOI: 10.1088/1748-605X/ad9803
Syed Faisal Badshah, Orva Abdullah, Kifayat Ullah Khan, Abid Hussain, Muhammad Mukhtiar, Kashif Barkat, Nasrullah Jan, Samiullah Khan, Muhammad Aamir, Huma Liaqat, Yasir Mehmood, Abdul Jabbar, Maham Waqar, Tehreem Khanum
{"title":"Sodium alginate based fast swelling nanogels for solubility enhancement of chlorthalidone; synthesis, characterization and biosafety evaluation.","authors":"Syed Faisal Badshah, Orva Abdullah, Kifayat Ullah Khan, Abid Hussain, Muhammad Mukhtiar, Kashif Barkat, Nasrullah Jan, Samiullah Khan, Muhammad Aamir, Huma Liaqat, Yasir Mehmood, Abdul Jabbar, Maham Waqar, Tehreem Khanum","doi":"10.1088/1748-605X/ad9803","DOIUrl":"https://doi.org/10.1088/1748-605X/ad9803","url":null,"abstract":"<p><p>Purpose of the study was to enhance the solubility of Chlorthalidone, poorly soluble diuretic that has been the used for lowering high blood pressure for the past half-century. Solubility is a challenge for approximately 90 % of drug candidates. Chlorthalidone is BCS Class IV drug whose poor solubility needs to be improved in order to optimize its efficacy. Using a free radical polymerization technique, sodium alginate-based nanogels were formulated for enhancing solubility of Chlorthalidone. The evaluation of various characteristics of nanogels was done by structural characterization, drug loading, swelling, sol-gel transition, in-vitro release, solubility, and toxicity tests. Fourier transform infrared spectroscopy (FT-IR) revealed characteristic peaks of the primary raw materials and polymeric nanogels. The FT-IR spectra of the Chlorthalidone-loaded nanogels suggested discrete drug peaks confirming successful drug loading. The system's amorphous nature and thermal stability were indicated by powder X-ray diffractometry and thermal analysis. The scanning electron microscopy indicated a well-defined porous structure. The size of the nanogels was determined by zeta size analysis to be 189 ±18.35 n.m. The solubility enhancement factor demonstrated the potential for improved solubility of the poorly soluble drug. The resulting biocompatible nanogels could be used to improve the solubility of hydrophobic drugs.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142741014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prevention of early thrombosis in transplanted vein model by encapsulation with tirofiban microneedle drug delivery system. 使用替罗非班微针给药系统包裹预防移植静脉模型的早期血栓形成。
Biomedical materials (Bristol, England) Pub Date : 2024-11-26 DOI: 10.1088/1748-605X/ad920d
Bolin Wang, Yazhu Yang, Xiaohang Ding, Jiefang Sun, Wenyuan Yu, Yuehua Zhao, Qian Ma, Yang Yu
{"title":"Prevention of early thrombosis in transplanted vein model by encapsulation with tirofiban microneedle drug delivery system.","authors":"Bolin Wang, Yazhu Yang, Xiaohang Ding, Jiefang Sun, Wenyuan Yu, Yuehua Zhao, Qian Ma, Yang Yu","doi":"10.1088/1748-605X/ad920d","DOIUrl":"10.1088/1748-605X/ad920d","url":null,"abstract":"<p><p>Early thrombosis following coronary artery bypass grafting (CABG) surgery leads to perioperative myocardial infarction, which causes difficulties for clinicians and patients. Moreover, once perioperative myocardial infarction occurs, the mortality rate is extremely high. In recent years, microneedle (MN) drug delivery systems have become a research hotspot with broad clinical application prospects. These systems are capable of achieving sustained, safe, and painless local drug release. In cardiovascular applications, MNs maximize local anticoagulant effects, inhibit endometrial hyperplasia, and reduce systemic side effects. We speculate that a MN drug delivery system can be used to target transplanted veins to inhibit their thrombosis and reduce the incidence of perioperative myocardial infarction after CABG surgery. Therefore, this study developed a hyaluronic acid MN patch loaded with tirofiban and conducted preliminary physicochemical tests. The safety, efficacy, biocompatibility, and targeting of the MN system were evaluated using<i>in vitro</i>and<i>in vivo</i>experiments using a jugular vein transplantation model. The results indicate that the MN system has excellent physical properties, safety, effectiveness, biocompatibility, and strong targeting, which can effectively inhibit early local thrombus formation. In addition, the observation of early postoperative endometrial hyperplasia activation provides a foundation for future research.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142633780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Doxorubicin-loaded core@shell cobalt ferrite-barium titanate magnetoelectric nanofibers for improved anticancer activity. 用于提高抗癌活性的负载多柔比星的核@壳钴铁氧体-钛酸钡磁电纳米纤维。
Biomedical materials (Bristol, England) Pub Date : 2024-11-25 DOI: 10.1088/1748-605X/ad971e
Khuram Shahzad, Muhammad Ali Abbasi, Muhammad Hassan Rafe, Anna Pestereva, Faheem Ullah, Muhammad Zaman, Muhammad Irfan, Muhammad Afzal, Anna O Orlova
{"title":"Doxorubicin-loaded core@shell cobalt ferrite-barium titanate magnetoelectric nanofibers for improved anticancer activity.","authors":"Khuram Shahzad, Muhammad Ali Abbasi, Muhammad Hassan Rafe, Anna Pestereva, Faheem Ullah, Muhammad Zaman, Muhammad Irfan, Muhammad Afzal, Anna O Orlova","doi":"10.1088/1748-605X/ad971e","DOIUrl":"https://doi.org/10.1088/1748-605X/ad971e","url":null,"abstract":"<p><p>Conventional drug delivery systems often suffer from non-specific distribution and limited therapeutic efficacy, leading to significant side effects. To address these challenges, we developed magnetoelectric, cobalt ferrite@barium titanate (CFO@BTO) nanofibers, with a core-shell structure for targeted anticancer drug delivery. The electrospinning method was employed to synthesize polymeric nanofibers based on magnetoelectric core-shell nanostructures. The Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Vibrating sample magnetometer (VSM) analysis confirmed the successful loading of nanostructures on polymeric nanofiber, the core-shell morphology and magnetoelectric phase of cobalt ferrite@barium titanate CFO@BTO, respectively. To verify the drug attachment, the optimization of drug release in an applied external magnetic field, and the time required for control drug release, UV-Vis spectroscopy was used. The effectiveness of magnetic field-assisted controlled drug release was demonstrated by achieving a 95 ± 1.03% drug release from magnetoelectric nanofibers (MENFs) within 30 minutes under a magnetic field of 4mT. In vitro cytotoxicity assay on human skin cancer (SK-MEL-28) cell lines exhibited a maximum 90 ± 2% cytotoxicity with 2±0.03 cm of drug loaded MENFs. Furthermore, the Hemolysis assay was carried out to affirm the biocompatibility and non-toxicity of drug loaded MENFs, which is suitable for anticancer therapy.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid curing dynamics of PEG-thiol-ene resins allow facile 3D bioprinting and in-air cell-laden microgel fabrication. PEG-thiol-ene 树脂的快速固化动力学可实现便捷的三维生物打印和空气中细胞微凝胶制造。
Biomedical materials (Bristol, England) Pub Date : 2024-11-25 DOI: 10.1088/1748-605X/ad8540
Lindy K Jang, Jesse T Ahlquist, Congwang Ye, Juliana Trujillo, Michael Triplett, Monica L Moya, Claire Robertson, William Hynes, Elisa M Wasson
{"title":"Rapid curing dynamics of PEG-thiol-ene resins allow facile 3D bioprinting and in-air cell-laden microgel fabrication.","authors":"Lindy K Jang, Jesse T Ahlquist, Congwang Ye, Juliana Trujillo, Michael Triplett, Monica L Moya, Claire Robertson, William Hynes, Elisa M Wasson","doi":"10.1088/1748-605X/ad8540","DOIUrl":"https://doi.org/10.1088/1748-605X/ad8540","url":null,"abstract":"<p><p>Thiol-norbornene photoclick hydrogels are highly efficient in tissue engineering applications due to their fast gelation, cytocompatibility, and tunability. In this work, we utilized the advantageous features of polyethylene glycol (PEG)-thiol-ene resins to enable fabrication of complex and heterogeneous tissue scaffolds using 3D bioprinting and in-air drop encapsulation techniques. We demonstrated that photoclickable PEG-thiol-ene resins could be tuned by varying the ratio of PEG-dithiol to PEG norbornene to generate a wide range of mechanical stiffness (0.5-12 kPa) and swelling ratios. Importantly, all formulations maintained a constant, rapid gelation time (<0.5 s). We used this resin in biological projection microstereolithography (BioP<i>µ</i>SL) to print complex structures with geometric fidelity and demonstrated biocompatibility by printing cell-laden microgrids. Moreover, the rapid gelling kinetics of this resin permitted high-throughput fabrication of tunable, cell-laden microgels in air using a biological in-air drop encapsulation apparatus (BioIDEA). We demonstrated that these microgels could support cell viability and be assembled into a gradient structure. This PEG-thiol-ene resin, along with BioP<i>µ</i>SL and BioIDEA technology, will allow rapid fabrication of complex and heterogeneous tissues that mimic native tissues with cellular and mechanical gradients. The engineered tissue scaffolds with a controlled microscale porosity could be utilized in applications including gradient tissue engineering, biosensing, and<i>in vitro</i>tissue models.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142712067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macroporous coating of silver-doped hydroxyapatite/silica nanocomposite on dental implants by EDTA intermediate to improve osteogenesis, antibacterial, and corrosion behavior. 通过 EDTA 中间体在牙科种植体上形成掺银羟基磷灰石/二氧化硅纳米复合材料的大孔涂层,以改善成骨、抗菌和抗腐蚀性能。
Biomedical materials (Bristol, England) Pub Date : 2024-11-25 DOI: 10.1088/1748-605X/ad971d
Maryam Farmani, Seyede Zohreh Mirahmadi-Zare, Elahe Masaeli, Farideh Tabatabaei, Arezou Baharlou-Houreh
{"title":"Macroporous coating of silver-doped hydroxyapatite/silica nanocomposite on dental implants by EDTA intermediate to improve osteogenesis, antibacterial, and corrosion behavior.","authors":"Maryam Farmani, Seyede Zohreh Mirahmadi-Zare, Elahe Masaeli, Farideh Tabatabaei, Arezou Baharlou-Houreh","doi":"10.1088/1748-605X/ad971d","DOIUrl":"https://doi.org/10.1088/1748-605X/ad971d","url":null,"abstract":"<p><p>Coating a titanium (Ti) implant with hydroxyapatite (HA) increases its bioactivity and biocompatibility. However, implant-related infections and biological corrosion have restricted the success of implant. To address these issues, a modified hydroxyapatite nanocomposite (HA/silica-EDTA-AgNPs nanocomposite) was proposed to take advantage of the sustained release of silver nanoparticles (AgNPs) and silicate ions through the silica-EDTA chelating network. As a result, a uniform layer of nanocomposite, compared to HA as the gold standard, was formed on Ti implants without fracture and with a high level of adhesion, using Plasma Electrolytic Oxidation (PEO). Bioactivity assessment evidenced a shift in the surface phase of the Ti implant to generation of beta-tricalcium phosphate (β-TCP), a more bioresorbable material than HA. Metabolic activity assessments using human dental pulp stem cells revealed that Ti surfaces modified by the new nanocomposite are superior to bare and HA-modified Ti surfaces for cell attachment and proliferation in vitro. In addition, it successfully inhibited bacterial growth and induced osteogenesis on the implant surface. Finally, potentiodynamic polarization behavior of Ti implants before and after coating confirmed that a thick oxide interface layer on the modified Ti surface acts as an electrical barrier and protects the substrate layer from corrosion. Therefore, the HA/silica-EDTA/Ag nanocomposite presented here, compared to HA, can better coat Ti dental implants due to its good biocompatibility and osteoinductive activity, along with improved biological stability.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesalamine loaded ethyl cellulose nanoparticles: optimization andin vivoevaluation of antioxidant potential in ulcerative colitis. 美沙拉明负载乙基纤维素纳米颗粒:溃疡性结肠炎抗氧化潜力的优化和体内评估。
Biomedical materials (Bristol, England) Pub Date : 2024-11-22 DOI: 10.1088/1748-605X/ad920e
Preety Gautam, Md Habban Akhter, Anubhav Anand, Safia Obaidur Rab, Mariusz Jaremko, Abdul-Hamid Emwas
{"title":"Mesalamine loaded ethyl cellulose nanoparticles: optimization and<i>in vivo</i>evaluation of antioxidant potential in ulcerative colitis.","authors":"Preety Gautam, Md Habban Akhter, Anubhav Anand, Safia Obaidur Rab, Mariusz Jaremko, Abdul-Hamid Emwas","doi":"10.1088/1748-605X/ad920e","DOIUrl":"10.1088/1748-605X/ad920e","url":null,"abstract":"<p><p>This study aimed to optimize mesalamine (MES)-nanoparticles (NPs) using Box Behnken Design and investigate its<i>in vivo</i>antioxidant potential in colon drug targeting. The formulation was prepared using oil/water (O/W) emulsion solvent evaporation technique for time dependent colonic delivery. The optimal formulation with the following parameters composition was selected: polymer concentration (% w/w) (A) = 0.63, surfactant concentration (% w/w) (B) = 0.71, sonication duration (min) (C) = 6. The outcomes showed that ethyl cellulose (EC) NP containing MES has particles size of 142 ± 2.8 nm, zeta potential (ZP) of -24.8 ± 2.3 mV, % EE of 87.9 ± 1.6%, and PDI of 0.226 ± 0.15. Scanning electron microscopy revealed NPs has a uniform and spherical shape. The<i>in-vitro</i>release data disclosed that the EC NPs containing MES showed bursts release of 52% ± 1.6% in simulated stomach media within 2 h, followed by a steady release of 93% ± 2.9% in simulated intestinal fluid that lasted for 48 h. The MES release from NP best match with the Korsmeyer-Peppas model (<i>R</i><sup>2</sup>= 0.962) and it followed Fickian diffusion case I release mechanism. The formulation stability over six-months at 25 °C ± 2 °C with 65% ± 5% relative humidity, and 40 °C ± 2 °C with 75% ± 5% relative humidity showed no significant changes in colour, EE, particle sizes and ZP. As per<i>in vivo</i>results, MES-NP effectively increased glutathione, SOD level and reduces the LPO level as compared to other treatment groups. The findings hold promise that the developed formulation can suitably give in ulcerative colitis.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142633779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-intensity pulsed ultrasound promotes cell viability of hUSCs in volumetric bioprinting scaffolds via PI3K/Akt and ERK1/2 pathways. 低强度脉冲超声通过PI3K/Akt和ERK1/2途径促进体积生物打印支架中hUSCs的细胞活力。
Biomedical materials (Bristol, England) Pub Date : 2024-11-22 DOI: 10.1088/1748-605X/ad920f
Jiahui Chen, Yuanchao Li, Xiaoqi Dai, Mei Huang, Meiling Chen, Yifei Zhan, Yaochuan Guo, Yuxuan Du, Liuqiang Li, Meiqin Liu, Maofang Huang, Jun Bian, Dehui Lai
{"title":"Low-intensity pulsed ultrasound promotes cell viability of hUSCs in volumetric bioprinting scaffolds via PI3K/Akt and ERK1/2 pathways.","authors":"Jiahui Chen, Yuanchao Li, Xiaoqi Dai, Mei Huang, Meiling Chen, Yifei Zhan, Yaochuan Guo, Yuxuan Du, Liuqiang Li, Meiqin Liu, Maofang Huang, Jun Bian, Dehui Lai","doi":"10.1088/1748-605X/ad920f","DOIUrl":"10.1088/1748-605X/ad920f","url":null,"abstract":"<p><p>The study aimed to investigate the impact of low-intensity pulsed ultrasound (LIPUS) on human urinary-derived stem cells (hUSCs) viability within three-dimensional (3D) cell-laden gelatin methacryloyl (GelMA) scaffolds. hUSCs were integrated into GelMA bio-inks at concentrations ranging from 2.5% to 10% w/v and then bioprinted using a volumetic-based method. Subsequent exposure of these scaffolds to LIPUS under varying parameters or sham irradiation aimed at optimizing the LIPUS treatment. Assessment of hUSCs viability employed Cell Counting Kit-8 (CCK8), cell cycle analysis, and live&dead cell double staining assays. Additionally, Western blot analysis was conducted to determine protein expression levels. With 3D bio-printed cell-laden GelMA scaffolds successfully constructed, LIPUS promoted the proliferation of hUSCs. Optimal LIPUS conditions, as determined through CCK8 and live&dead cell double staining assays, was achieved at a frequency of 1.5 MHz, a spatial-average temporal-average intensity (ISATA) of 150 mW cm<sup>-2</sup>, with an exposure duration of 10 min per session administered consecutively for two sessions. LIPUS facilitated the transition from G0/G1 phase to S and G2/M phases and enhanced the phosphorylation of ERK1/2 and PI3K-Akt. Inhibition of ERK1/2 (U0126) and PI3K (LY294002) significantly attenuated LIPUS-induced phosphorylation of ERK1/2 and PI3K-Akt respectively, both of which decreased the hUSC viability within 3D bio-printed GelMA scaffolds. Applying a LIPUS treatment at an ISATA of 150 mW cm<sup>-2</sup>promotes the growth of hUSCs within 3D bio-printed GelMA scaffolds through modulating ERK1/2 and PI3K-Akt signaling pathways.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142633778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信