Lauren E Mehanna, James D Boyd, Shelley Remus-Williams, Nicole M Racca, Dawson P Spraggins, Martha E Grady, Brad J Berron
{"title":"Improvement of cellular pattern organization and clarity through centrifugal force.","authors":"Lauren E Mehanna, James D Boyd, Shelley Remus-Williams, Nicole M Racca, Dawson P Spraggins, Martha E Grady, Brad J Berron","doi":"10.1088/1748-605X/ada508","DOIUrl":"10.1088/1748-605X/ada508","url":null,"abstract":"<p><p>Rapid and strategic cell placement is necessary for high throughput tissue fabrication. Current adhesive cell patterning systems rely on fluidic shear flow to remove cells outside of the patterned regions, but limitations in washing complexity and uniformity prevent adhesive patterns from being widely applied. Centrifugation is commonly used to study the adhesive strength of cells to various substrates; however, the approach has not been applied to selective cell adhesion systems to create highly organized cell patterns. This study shows centrifugation as a promising method to wash cellular patterns after selective binding of cells to the surface has taken place. After patterning H9C2 cells using biotin-streptavidin as a model adhesive patterning system and washing with centrifugation, there is a significant number of cells removed outside of the patterned areas of the substrate compared to the initial seeding, while there is not a significant number removed from the desired patterned areas. This method is effective in patterning multiple size and linear structures from line widths of 50-200 μm without compromising immediate cell viability below 80%. We also test this procedure on a variety of tube-forming cell lines (MPCs, HUVECs) on various tissue-like surface materials (collagen 1 and Matrigel) with no significant differences in their respective tube formation metrics when the cells were seeded directly on their unconjugated surface versus patterned and washed through centrifugation. This result demonstrates that our patterning and centrifugation system can be adapted to a variety of cell types and substrates to create patterns tailored to many biological applications.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142924172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoting Xu, Yehong He, Xiaochen Chen, Zhen Fan, Deping Wang
{"title":"Preparation and characterization of mesoporous core-shell bioactive glass-based cements for direct pulp capping.","authors":"Xiaoting Xu, Yehong He, Xiaochen Chen, Zhen Fan, Deping Wang","doi":"10.1088/1748-605X/adb119","DOIUrl":"10.1088/1748-605X/adb119","url":null,"abstract":"<p><p>Direct pulp capping is crucial for maintaining dental pulp vitality. The materials employed for this purpose should possess properties such as easy-handling, excellent biocompatibility, infection resistance, and the ability to stimulate the formation of reparative dentin. Mineral trioxide aggregate (MTA) is commonly used for pulp capping. However, certain limitations, including its long setting time, insufficient anti-washout ability, high initial curing pH, and handling difficulties, restrict MTA from meeting a broader range of clinical demands. Bioactive glass (BG) is known for its osteo-inductive and bone restoration properties. This study aims to develop a novel BG-based cement (BG-<i>x</i>/SA) for pulp capping applications, using BG microspheres (BG-<i>x</i>) as the solid phase and sodium alginate solution (SA) as the liquid phase. The solid phase has core-shell microspheres made by<i>in-situ</i>transformation, with BG in the core and hydroxyapatite in the shell. The study focuses on how the<i>in-situ</i>synthesis reaction parameters affect the cement's properties. Ultimately, BG-6/SA cement was identified as the optimal formulation, and a comparison with MTA shows BG-6/SA cement has a short setting time, good anti-washout performance, can adjust pH to mildly alkaline, promotes dentin formation, and has antibacterial effects. Thus, BG-6/SA cement has significant research value and good prospects as a new pulp-capping material.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143076649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gimmi Guruprasad Engoor, Vimal Kumar Dewangan, Sachin Latiyan, T S Sampath Kumar, N Sujatha, I A Palani, Nilesh J Vasa
{"title":"Synthesis and characterization of TiO<sub>2</sub>-ZnO composite thin films for biomedical applications.","authors":"Gimmi Guruprasad Engoor, Vimal Kumar Dewangan, Sachin Latiyan, T S Sampath Kumar, N Sujatha, I A Palani, Nilesh J Vasa","doi":"10.1088/1748-605X/adb118","DOIUrl":"10.1088/1748-605X/adb118","url":null,"abstract":"<p><p>Titania (TiO<sub>2</sub>) has superior biocompatibility, while zinc oxide (ZnO) is antibacterial. This investigation aimed to study the influence of TiO<sub>2</sub>-ZnO composite films on enhancing the biocompatibility of stainless steel (SS). Radio-frequency magnetron sputtering (RF-MS) technique is used to synthesize TiO<sub>2</sub>-ZnO composite thin films on 304-SS substrates from three sputtering targets with typical chemical compositions of 100% TiO<sub>2</sub>, 90%TiO<sub>2</sub>-10%ZnO, and 75%TiO<sub>2</sub>-25%ZnO, mixed by their respective weight percentages. The influence of surface chemistry, morphology, and wettability of TiO<sub>2</sub>-ZnO composite film on its osseointegration and antifouling characteristics was studied. The biocompatibility was assessed by protein adsorption kit, cytotoxicity assay, and cell adhesion of MG63 osteoblast cells, followed by<i>S. aureus</i>bacterial adhesion studies. All RF-MS films displayed hydrophobicity, minimal bacterial-cell adhesion, and higher cytocompatibility than the SS. RF-MS films deposited from the 75%TiO<sub>2</sub>-25%ZnO target exhibited the highest antifouling capability due to the least protein adsorption and the highest antibacterial ZnO concentration. However, increased ZnO concentration decreased MG63 cell viability. RF-MS films deposited from the 90%TiO<sub>2</sub>-10%ZnO target showed the highest mammalian cell viability of ≈88% and attachment. High plasma protein adsorption caused decreased mammalian cell viability and higher bacterial adhesion on 100% TiO<sub>2</sub>film and SS. Biocompatible and antifouling TiO<sub>2</sub>-ZnO composite thin films on SS substrates offer an alternative to conventional antibiotic coatings to combat antimicrobial resistance (AMR) and biofilm-related infections.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143076651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Three-dimensional cell culture-derived extracellular vesicles loaded alginate/hyaluronic acid composite scaffold as an optimal therapy for cartilage defect regeneration.","authors":"Wanting Zhang, Shuyi Li, Yingying Peng, Zhujie Deng, Quanjiang Li, Rui Tian, Xiubin Kuang, Yuyi Kang, Ronghui Sun, Chen Huang, Zhengqiang Yuan","doi":"10.1088/1748-605X/adb22e","DOIUrl":"10.1088/1748-605X/adb22e","url":null,"abstract":"<p><p>Osteoarthritis (OA) is a chronic musculoskeletal disease characterized by joint inflammation and progressive degeneration of articular cartilage. Currently a definitive cure for OA remains to be a challenge due to the very low self-repair capacity of cartilage, thus development of more effective therapies is needed for cartilage repair. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have shown great potential as therapeutic agents for stimulating regeneration of articular cartilage. However, a standardized protocol is still lacking for manufacturing of highly active EVs for clinical applications. This study aimed to investigate the efficient production of highly active EVs by 3-dimensional (3D) MSC culture, verify the reparative efficacy of EVs on cartilage defect and elucidate the repair mechanisms. Umbilical cord MSCs were embedded in alginate to form MSC spheroids for 3D culture in human platelet lysate (hPL)-containing medium, which produced 3D culture-derived EVs (3D-EVs) with a significantly improved yield. The 3D-EVs expressed higher level of VEGF, and appeared superior to two-dimensional (2D) monolayer MSC culture-derived EVs (2D-EVs) to improve migration and proliferation in MSCs and inflammatory chondrocytes, and to suppress expression of cartilage-degrading factors. Importantly, the 3D-EVs and sodium alginate (SA)-hyaluronic acid (HA) composite hydrogel (3D-EVs/SA-HA) demonstrated significantly improved therapeutic efficacy than 2D-EVs/SA-HA hydrogel for repair of cartilage defect<i>in vivo</i>. The underlying mechanisms are associated with the concomitant upregulation of type II collagen and cartilage synthesis and downregulation of MMP13 in cartilage tissues. Collectively, these data showed that highly active MSC EVs could be efficiently manufactured by 3D cell culture with hPL-containing medium, and these EVs were superior to 2D-EVs for the repair of articular cartilage defect.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143191284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The application and development prospects of extracellular vesicles in oral administration.","authors":"Weiqun Li, Ming-Jie Dong, Zhaoqing Shi, Haibing Dai, Shanming Lu, Huibin Wu, Fan Zhang, Guihong Lu, Jianbo Yu","doi":"10.1088/1748-605X/adb22c","DOIUrl":"10.1088/1748-605X/adb22c","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are nanoscale phospholipid-based particles secreted by cells and are essential mediators responsible for intercellular signal communication. The rapid development of EV nanotechnology has brought unprecedented opportunities for nanomedicine. Among various administration methods, oral administration is the most convenient and simplest. However, most drugs (peptides, small molecule drugs, nucleic acids, and therapeutic proteins) greatly reduce their oral bioavailability due to the harsh gastrointestinal environment. Notably, some EVs have been shown to cross biological barriers, including the gastrointestinal tract. The distinctive biological properties of EVs make them a promising natural carrier for oral drug delivery. This review introduces the characteristics of EVs, covering their classification, production methods, and therapeutic efficacy in oral administration. Additionally, we explore the potential roles of EVs in disease prevention and treatment, as well as their future prospects in pharmaceutical applications. This comprehensive overview aims to provide insights into the application of EVs in oral drug delivery, highlighting their advantages, current progress, and the challenges that need to be overcome for successful clinical translation.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143191283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chitosan and ibuprofen grafted electrospun polylactic acid/gelatin membrane mitigates inflammatory response.","authors":"Qiaolin Ma, Anlin Yin, Xinjian Wan, Binbin Sun, Hongsheng Wang, Mohamed El-Newehy, Meera Moydeen Abdulhameed, Xiumei Mo, Jinglei Wu, Tian Tu","doi":"10.1088/1748-605X/adae48","DOIUrl":"10.1088/1748-605X/adae48","url":null,"abstract":"<p><p>Electrospun membranes with biomimetic fibrous structures and high specific surfaces benefit cell proliferation and tissue regeneration but are prone to cause chronic inflammation and foreign body response. To solve these problems, we herein report an approach to functionalize electrospun membranes with antibacterial and anti-inflammatory components to modulate inflammatory responses and improve implantation outcomes. Specifically, electrospun polylactic acid (PLA)/gelatin (Gel) fibers were grafted with chitosan (CS) and ibuprofen (IBU) via carbodiimide chemistry. Our results show that the surface modification strategy endows electrospun membranes with moderate antibacterial activities and sustained release of anti-inflammatory drugs. The electrospun PLA/Gel-CS-IBU membrane showed good antioxidant and anti-inflammatory activity as evidenced by suppressing M1 polarization and promoting M2 polarization of macrophages<i>in vitro</i>. Similarly, it induced significantly milder chronic inflammatory responses<i>in vivo</i>than unmodified electrospun membranes. Given the good anti-inflammatory and antibacterial effects, this strategy might improve the biological performance of electrospun membranes as implants in clinics.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143043823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biomedical applications of Bombyx mori silk in skin regeneration and cutaneous wound healing.","authors":"Mohammad Hossein Khosropanah, Alireza Ghofrani, Mahdi Alizadeh Vaghasloo, Mazyar Zahir, Afshin Bahrami, Ashkan Azimzadeh, Zahra Hassannejad, Masoumeh Majidi Zolbin","doi":"10.1088/1748-605X/adb552","DOIUrl":"https://doi.org/10.1088/1748-605X/adb552","url":null,"abstract":"<p><p>A mere glance at the foundation of the sericulture industry to produce silk and the consequent establishment of the Silk Road to transport it; elucidates the significant role that this material has played in human history. Owing to its exceptional robustness, silk was introduced into medicine as a surgical suture approximately two millennia ago. During the last decades, silk has garnered attention as a possible source of biological-based materials that can be effectively used in regenerative medicine. Silk's unique characteristics, like its low immunogenicity, suitable adhesive properties, exceptional tensile strength, perfect hemostatic properties, adequate permeability to oxygen and water, resistance to microbial colonization, and most importantly, excellent biodegradability; make it an outstanding choice for biomedical applications. Although there are many different types of silk in nature, Bombyx mori (B. mori) silk accounts for about 90% of global production and is the most thoroughly investigated and the most commonly used. Silk fibroin (SF) and silk sericin (SS) are the two main protein constituents of silk. SF has been manufactured in various morphologic forms (e.g., hydrogels, sponges, films, etc.) and has been widely used in the biomedical field, especially as a scaffold in tissue engineering. Similarly, SS has demonstrated a vast potential as a suitable biomaterial in tissue engineering and regenerative medicine. Initial studies on SF and SS as wound dressings have shown encouraging results. This review aims to comprehensively discuss the potential role of silk proteins in refining wound healing and skin regeneration.
.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143411927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yifan Xv, Li Xu, Dandan Wei, Yinghua Tao, Tianzhu Zhang, Zhenling Ji
{"title":"A coaxial electrospun PLLA/PPDO/NAR mesh for abdominal wall hernia repair.","authors":"Yifan Xv, Li Xu, Dandan Wei, Yinghua Tao, Tianzhu Zhang, Zhenling Ji","doi":"10.1088/1748-605X/adb554","DOIUrl":"https://doi.org/10.1088/1748-605X/adb554","url":null,"abstract":"<p><strong>Purpose: </strong>This study aims to employ poly-L-lactic acid (PLLA) and poly(p-dioxanone) (PPDO), loaded with naringin (NAR) to fabricate a functionalized degradable mesh which can promote abdominal wall hernia (AWH) repair.
Methods: Three meshes named PPDO, PLLA/PPDO, and PLLA/PPDO/NAR were fabricated by electrospinning. The physical and chemical properties of the meshes were evaluated from the aspects of morphology, wettability, chemical composition, mechanical properties, and in vitro degradation. Then, the meshes were implanted into rats to evaluate their repair effects on abdominal wall defect models.
Results: The mechanical properties of PLLA/PPDO/NAR mesh were superior to the other two meshes, with a fixed tensile strength of 36.47 ± 2.40 N/cm and an elongation at break of 287.98% ± 51.67%, which adequately met the mechanical strength required for the human abdominal wall. The core-shell structure effectively delayed the degradation of PLLA/PPDO as well as PLLA/PPDO/NAR mesh, and drug release of PLLA/PPDO/NAR mesh. On the 7th, 14th, and 28th day after implantation, more neovascularization and tissue formation were observed in the PLLA/PPDO/NAR group and the newborn collagen was arranged in a regular and neat manner compared to the other two groups. The immunohistochemical results showed that the PLLA/PPDO/NAR mesh promoted abdominal wall repair by inhibiting the expression of MMP2 as well as IL-6, and increasing the expression of VEGF.
Conclusions: The PLLA/PPDO/NAR mesh is promising for application in AWH repair.
.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143411925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A tannic acid coated silk fibroin sponge loaded with bioglass for noncompressible hemostasis.","authors":"Shanshan Chu, Xu Fang, Junfeng Xu, Wenwen Yuan","doi":"10.1088/1748-605X/adb553","DOIUrl":"https://doi.org/10.1088/1748-605X/adb553","url":null,"abstract":"<p><p>A hemostatic sponge designed for hemostasis of noncompressible penetrating wounds should exhibit rapid shape recovery, strong coagulation activity, and effective antibacterial property. In this study, we prepared a tannic acid coated silk fibroin sponge loaded with bioglass. In vitro, the sponge had a three-dimensional porous structure, good liquid adsorption capacity, and a water-triggered shape recovery feature. The sponge possessed strong coagulation activity and antibacterial property, while exhibiting low cytotoxicity and minimal hemolytic effects. In vivo, the sponge showed a greater advantage in controlling bleeding from both rat liver injury and penetrating wounds compared to commercial gauze and gelatin sponge. In conclusion, the developed sponge can be promising for noncompressible hemostasis.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143411926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thiolated gellan gum/polyethylene glycol diacrylate hydrogels containing timolol maleate-loaded chitosan nanoparticles for ophthalmic delivery.","authors":"Golnaz Shajari, Hamid Erfan-Niya, Marziyeh Fathi, Nazanin Amiryaghoubi","doi":"10.1088/1748-605X/adb555","DOIUrl":"https://doi.org/10.1088/1748-605X/adb555","url":null,"abstract":"<p><p>The combination of hydrogels with nanoformulations can significantly enhance the delivery and effectiveness of drugs in ophthalmic drug delivery systems. In the current study, the PEGDA/GGSH hydrogels based on thiolated gellan gum (GGSH) and polyethylene glycol diacrylate (PEGDA) were prepared via thiol-ene reaction using Irgacure 2959 as a photoinitiator. To this end, the modification of gellan gum (GG) was achieved by esterification of the hydroxyl groups of GG with the carboxyl group of mercaptopropionic acid with a free thiol amount of 95.5 μmol/g. To provide sustained release, chitosan nanoparticles (CSNPs) containing timolol maleate (TM) with 56.4% entrapment efficiency were synthesized by the desolvation method and encapsulated in the developed hydrogel. The values of zeta potential and particle size of CSNPs were +26.0 mV and 182.4 nm, respectively. The physico/chemical properties of the hydrogels were investigated via texture analyzer, FT-IR, XRD, and SEM. The in vitro degradation, swelling behavior, rheological assessments, cell viability testing, and porosity determination were evaluated. With the increase in PEGDA concentration, the mechanical properties were increased. While the rate of swelling, degradation, and drug release were decreased. The in vitro biocompatibility of hydrogels was confirmed using the MTT test. According to an ex vivo study, ocular drug delivery using the obtained transparent hydrogels is promising due to improved drug permeation and sustained release of TM via CSNPs.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143411929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}