Inorganic whiskers containing alkaline and bioactive ions enhance the comprehensive properties of 3D-printed biopolymer bone scaffold.

Sidan Feng, Bowen Li, Yanting Wei, Yunlei Wu, Yanjian Huang, Bin Liu, Shan Wang, Huaming Mai, Wenjie Zhang, Hui You, Jieming Wen, Yu Long, Wang Guo
{"title":"Inorganic whiskers containing alkaline and bioactive ions enhance the comprehensive properties of 3D-printed biopolymer bone scaffold.","authors":"Sidan Feng, Bowen Li, Yanting Wei, Yunlei Wu, Yanjian Huang, Bin Liu, Shan Wang, Huaming Mai, Wenjie Zhang, Hui You, Jieming Wen, Yu Long, Wang Guo","doi":"10.1088/1748-605X/adf619","DOIUrl":null,"url":null,"abstract":"<p><p>Polylactic acid (PLA) has been widely studied as a scaffold material for bone tissue engineering, but still faces challenges, including as insufficient mechanical strength, slow degradation rate, and poor biomineralization and cellular response. In this study, PLA-based composite bone scaffolds incorporating basic magnesium sulfate whiskers (BMSW) at concentrations of 0, 2.5, 5.0, 7.5, and 10 wt% were fabricated via fused deposition modeling (FDM) 3D printing technology. The compression properties of the scaffolds increased with increasing BMSW content and peaked at 5 wt% BMSW, with the strength and modulus reaching 21.51 MPa and 297.38 MPa, respectively, 73% and 50% higher than those of PLA due to the reinforcing effect and uniform distribution of BMSW whiskers. The addition of BMSW accelerated the degradation of the PLA scaffold, with faster degradation observed at higher BMSW contents. Specifically, the alkaline ions (e.g. OH<sup>-</sup>) released by BMSW neutralized the acidic products generated during the degradation of PLA, thereby accelerating the degradation of the scaffold through the synergistic effect of acid and base. Magnesium ions steadily released from BMSW degradation due to the encapsulation effect of the PLA matrix, and their release rate could be controlled by varying the BMSW content. The incorporation of BMSW also enhanced the biomineralization capacity of the composite scaffolds in simulated body fluid and promoted the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells, as confirmed by fluorescence and alkaline phosphatase staining. This study demonstrates that incorporating inorganic whiskers containing bioactive and alkaline ions into polymer can enhance its overall performance, making it more suitable for bone scaffold development.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/adf619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Polylactic acid (PLA) has been widely studied as a scaffold material for bone tissue engineering, but still faces challenges, including as insufficient mechanical strength, slow degradation rate, and poor biomineralization and cellular response. In this study, PLA-based composite bone scaffolds incorporating basic magnesium sulfate whiskers (BMSW) at concentrations of 0, 2.5, 5.0, 7.5, and 10 wt% were fabricated via fused deposition modeling (FDM) 3D printing technology. The compression properties of the scaffolds increased with increasing BMSW content and peaked at 5 wt% BMSW, with the strength and modulus reaching 21.51 MPa and 297.38 MPa, respectively, 73% and 50% higher than those of PLA due to the reinforcing effect and uniform distribution of BMSW whiskers. The addition of BMSW accelerated the degradation of the PLA scaffold, with faster degradation observed at higher BMSW contents. Specifically, the alkaline ions (e.g. OH-) released by BMSW neutralized the acidic products generated during the degradation of PLA, thereby accelerating the degradation of the scaffold through the synergistic effect of acid and base. Magnesium ions steadily released from BMSW degradation due to the encapsulation effect of the PLA matrix, and their release rate could be controlled by varying the BMSW content. The incorporation of BMSW also enhanced the biomineralization capacity of the composite scaffolds in simulated body fluid and promoted the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells, as confirmed by fluorescence and alkaline phosphatase staining. This study demonstrates that incorporating inorganic whiskers containing bioactive and alkaline ions into polymer can enhance its overall performance, making it more suitable for bone scaffold development.

含有碱性离子和生物活性离子的无机晶须增强了3d打印生物聚合物骨支架的综合性能。
聚乳酸(PLA)作为骨组织工程支架材料得到了广泛的研究,但仍面临机械强度不足、降解速度慢、生物矿化和细胞反应差等挑战。在本研究中,通过熔融沉积建模(FDM) 3D打印,将不同含量的碱式硫酸镁晶须(BMSW)(0、2.5、5.0、7.5和10wt%)掺入PLA中,制备复合骨支架。随着BMSW含量的增加,支架的压缩性能得到改善,在BMSW含量达到5wt%时达到峰值,由于BMSW晶须的增强作用和均匀分布,支架的强度和模量分别达到21.51 MPa和297.38 MPa,比PLA高73%和50%。BMSW的加入加速了PLA支架的降解,BMSW含量越高,降解速度越快。具体来说,BMSW释放的碱性离子(如OH -毒血症)中和了PLA降解过程中产生的酸性产物,从而通过酸碱的协同作用加速了支架的降解。由于PLA基质的包封作用,降解过程中释放的镁离子稳定释放,其浓度可以通过改变垃圾的含量来控制。荧光和碱性磷酸酶(ALP)染色证实,BMSW的掺入增强了复合支架在模拟体液中的生物矿化能力,促进了骨髓间充质干细胞的增殖和成骨分化。本研究表明,在PLA中加入含有生物活性离子和碱性离子的无机晶须可以提高PLA的整体性能,使其更适合骨支架的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信