Peng Chen, Jiawei Lu, Yi Liu, Hongwei Wang, Yaguang Han, Xiaoji Luo
{"title":"Stem cell membrane-coated rough mesoporous silica nanoparticles for enhanced osteogenic differentiation and bone repair via dexamethasone delivery.","authors":"Peng Chen, Jiawei Lu, Yi Liu, Hongwei Wang, Yaguang Han, Xiaoji Luo","doi":"10.1088/1748-605X/ae0bda","DOIUrl":null,"url":null,"abstract":"<p><p>Mesoporous silica nanoparticles (MSNs) have been demonstrated to promote osteoblast differentiation; however, the unclear impact of their surface roughness on osteogenesis, coupled with inadequate targeting capability and suboptimal therapeutic outcomes, presents major challenges. Herein, we developed a biomimetic nanoplatform, CM@DEX-R-MSN, by coating dexamethasone (DEX) loaded-rough MSN (R-MSN) with mesenchymal stem cell (MSC) membranes (CM) to enhance osteogenic differentiation of MSCs for improved bone regeneration. The CM@DEX-R-MSN showed retained rough surfaces with a hydrodynamic diameter of 164.35 ± 5.81 nm, a Zeta potential of -11.98 ± 1.37 mV with good MSC membrane integrity, negligible cytotoxicity both in vitro and in vivo. CM@DEX-R-MSN exhibited significantly enhanced MSC internalization compared to uncoated MSN. They markedly upregulated alkaline phosphatase activity, osteogenic markers, and mineralization nodule formation in vitro. In bone defect model established in rabbits, CM@DEX-R-MSN restored bone volume and prolonged retention at the defect site. More importantly, we experimentally observed that both R-MSN and CM-coated nanoparticles exhibited superior osteogenic differentiation effects compared to conventional MSNs and non-coated counterparts, respectively-with CM@DEX-R-MSN demonstrating the most potent efficacy. Our results demonstrated that CM@DEX-R-MSN synergistically integrates MSC membrane-mediated homotypic targeting, nanotopography of R-MSN, and DEX-driven osteogenic differentiation, offering a promising targeted therapeutic strategy for bone regeneration. Their enhanced biocompatibility, osteogenic efficacy, and sustained retention underscore its translational potential for orthopedic applications.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ae0bda","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Mesoporous silica nanoparticles (MSNs) have been demonstrated to promote osteoblast differentiation; however, the unclear impact of their surface roughness on osteogenesis, coupled with inadequate targeting capability and suboptimal therapeutic outcomes, presents major challenges. Herein, we developed a biomimetic nanoplatform, CM@DEX-R-MSN, by coating dexamethasone (DEX) loaded-rough MSN (R-MSN) with mesenchymal stem cell (MSC) membranes (CM) to enhance osteogenic differentiation of MSCs for improved bone regeneration. The CM@DEX-R-MSN showed retained rough surfaces with a hydrodynamic diameter of 164.35 ± 5.81 nm, a Zeta potential of -11.98 ± 1.37 mV with good MSC membrane integrity, negligible cytotoxicity both in vitro and in vivo. CM@DEX-R-MSN exhibited significantly enhanced MSC internalization compared to uncoated MSN. They markedly upregulated alkaline phosphatase activity, osteogenic markers, and mineralization nodule formation in vitro. In bone defect model established in rabbits, CM@DEX-R-MSN restored bone volume and prolonged retention at the defect site. More importantly, we experimentally observed that both R-MSN and CM-coated nanoparticles exhibited superior osteogenic differentiation effects compared to conventional MSNs and non-coated counterparts, respectively-with CM@DEX-R-MSN demonstrating the most potent efficacy. Our results demonstrated that CM@DEX-R-MSN synergistically integrates MSC membrane-mediated homotypic targeting, nanotopography of R-MSN, and DEX-driven osteogenic differentiation, offering a promising targeted therapeutic strategy for bone regeneration. Their enhanced biocompatibility, osteogenic efficacy, and sustained retention underscore its translational potential for orthopedic applications.