Seong-Jin Kim, In Ho Kang, Hyuk Joo Ahn, Wan Jin Cho, Hyun Jung Kim, Jinho Shin, Min Kyu Sung, Jae Hoon Lee, Eunsung Jun
{"title":"基于细胞外基质的新型药物在小鼠肝脏撕裂伤模型中的止血和粘连预防作用。","authors":"Seong-Jin Kim, In Ho Kang, Hyuk Joo Ahn, Wan Jin Cho, Hyun Jung Kim, Jinho Shin, Min Kyu Sung, Jae Hoon Lee, Eunsung Jun","doi":"10.1088/1748-605X/ae0d21","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic bleeding and tissue damage pose complex clinical challenges requiring rapid hemostasis and concurrent tissue regeneration. Although traditional hemostatic agents primarily focus on controlling bleeding, they generally lack additional functionalities such as preventing adhesion and promoting tissue regeneration, limiting their clinical utility. This study developed a composite regenerative hemostatic agent based on a porcine decellularized extracellular matrix (ECM) to address these limitations. This agent is designed to achieve rapid hemostasis, prevent adhesions, and promote tissue regeneration. Its functionality was evaluated using a mouse liver laceration model to explore its clinical applicability. Hemostatic efficacy was assessed by measuring the bleeding time and blood loss, and comparing the composite agent with conventional commercial hemostatic agents. Additionally, the degree of adhesion between the liver and surrounding tissues was evaluated after re-opening the abdomen to confirm the anti-adhesion effects. Tissue regeneration and inflammatory responses at the injury site were further analyzed using hematoxylin and eosin staining, Masson's trichrome staining, and Ki-67 immunohistochemistry. The ECM-based hemostatic agent significantly reduced the bleeding time compared to conventional products and markedly reduced adhesion formation. In the experimental group, the agent enhanced cell attachment and proliferation at the damaged tissue site, to facilitate the natural tissue regeneration process, without inducing inflammatory or pathological changes. The developed composite hemostatic agent could overcome the limitations of existing products by integrating three crucial functions: rapid hemostasis, preventing adhesion, and promoting tissue regeneration. These findings suggest the potential for hepatocyte proliferation and tissue remodeling, which require further validation, and indicate promising applicability in complex surgical environments.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hemostatic and adhesion prevention performance of an extracellular matrix based novel agent in a mouse liver laceration model.\",\"authors\":\"Seong-Jin Kim, In Ho Kang, Hyuk Joo Ahn, Wan Jin Cho, Hyun Jung Kim, Jinho Shin, Min Kyu Sung, Jae Hoon Lee, Eunsung Jun\",\"doi\":\"10.1088/1748-605X/ae0d21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traumatic bleeding and tissue damage pose complex clinical challenges requiring rapid hemostasis and concurrent tissue regeneration. Although traditional hemostatic agents primarily focus on controlling bleeding, they generally lack additional functionalities such as preventing adhesion and promoting tissue regeneration, limiting their clinical utility. This study developed a composite regenerative hemostatic agent based on a porcine decellularized extracellular matrix (ECM) to address these limitations. This agent is designed to achieve rapid hemostasis, prevent adhesions, and promote tissue regeneration. Its functionality was evaluated using a mouse liver laceration model to explore its clinical applicability. Hemostatic efficacy was assessed by measuring the bleeding time and blood loss, and comparing the composite agent with conventional commercial hemostatic agents. Additionally, the degree of adhesion between the liver and surrounding tissues was evaluated after re-opening the abdomen to confirm the anti-adhesion effects. Tissue regeneration and inflammatory responses at the injury site were further analyzed using hematoxylin and eosin staining, Masson's trichrome staining, and Ki-67 immunohistochemistry. The ECM-based hemostatic agent significantly reduced the bleeding time compared to conventional products and markedly reduced adhesion formation. In the experimental group, the agent enhanced cell attachment and proliferation at the damaged tissue site, to facilitate the natural tissue regeneration process, without inducing inflammatory or pathological changes. The developed composite hemostatic agent could overcome the limitations of existing products by integrating three crucial functions: rapid hemostasis, preventing adhesion, and promoting tissue regeneration. These findings suggest the potential for hepatocyte proliferation and tissue remodeling, which require further validation, and indicate promising applicability in complex surgical environments.</p>\",\"PeriodicalId\":72389,\"journal\":{\"name\":\"Biomedical materials (Bristol, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ae0d21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ae0d21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hemostatic and adhesion prevention performance of an extracellular matrix based novel agent in a mouse liver laceration model.
Traumatic bleeding and tissue damage pose complex clinical challenges requiring rapid hemostasis and concurrent tissue regeneration. Although traditional hemostatic agents primarily focus on controlling bleeding, they generally lack additional functionalities such as preventing adhesion and promoting tissue regeneration, limiting their clinical utility. This study developed a composite regenerative hemostatic agent based on a porcine decellularized extracellular matrix (ECM) to address these limitations. This agent is designed to achieve rapid hemostasis, prevent adhesions, and promote tissue regeneration. Its functionality was evaluated using a mouse liver laceration model to explore its clinical applicability. Hemostatic efficacy was assessed by measuring the bleeding time and blood loss, and comparing the composite agent with conventional commercial hemostatic agents. Additionally, the degree of adhesion between the liver and surrounding tissues was evaluated after re-opening the abdomen to confirm the anti-adhesion effects. Tissue regeneration and inflammatory responses at the injury site were further analyzed using hematoxylin and eosin staining, Masson's trichrome staining, and Ki-67 immunohistochemistry. The ECM-based hemostatic agent significantly reduced the bleeding time compared to conventional products and markedly reduced adhesion formation. In the experimental group, the agent enhanced cell attachment and proliferation at the damaged tissue site, to facilitate the natural tissue regeneration process, without inducing inflammatory or pathological changes. The developed composite hemostatic agent could overcome the limitations of existing products by integrating three crucial functions: rapid hemostasis, preventing adhesion, and promoting tissue regeneration. These findings suggest the potential for hepatocyte proliferation and tissue remodeling, which require further validation, and indicate promising applicability in complex surgical environments.