基于细胞外基质的新型药物在小鼠肝脏撕裂伤模型中的止血和粘连预防作用。

Seong-Jin Kim, In Ho Kang, Hyuk Joo Ahn, Wan Jin Cho, Hyun Jung Kim, Jinho Shin, Min Kyu Sung, Jae Hoon Lee, Eunsung Jun
{"title":"基于细胞外基质的新型药物在小鼠肝脏撕裂伤模型中的止血和粘连预防作用。","authors":"Seong-Jin Kim, In Ho Kang, Hyuk Joo Ahn, Wan Jin Cho, Hyun Jung Kim, Jinho Shin, Min Kyu Sung, Jae Hoon Lee, Eunsung Jun","doi":"10.1088/1748-605X/ae0d21","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic bleeding and tissue damage pose complex clinical challenges requiring rapid hemostasis and concurrent tissue regeneration. Although traditional hemostatic agents primarily focus on controlling bleeding, they generally lack additional functionalities such as preventing adhesion and promoting tissue regeneration, limiting their clinical utility. This study developed a composite regenerative hemostatic agent based on a porcine decellularized extracellular matrix (ECM) to address these limitations. This agent is designed to achieve rapid hemostasis, prevent adhesions, and promote tissue regeneration. Its functionality was evaluated using a mouse liver laceration model to explore its clinical applicability. Hemostatic efficacy was assessed by measuring the bleeding time and blood loss, and comparing the composite agent with conventional commercial hemostatic agents. Additionally, the degree of adhesion between the liver and surrounding tissues was evaluated after re-opening the abdomen to confirm the anti-adhesion effects. Tissue regeneration and inflammatory responses at the injury site were further analyzed using hematoxylin and eosin staining, Masson's trichrome staining, and Ki-67 immunohistochemistry. The ECM-based hemostatic agent significantly reduced the bleeding time compared to conventional products and markedly reduced adhesion formation. In the experimental group, the agent enhanced cell attachment and proliferation at the damaged tissue site, to facilitate the natural tissue regeneration process, without inducing inflammatory or pathological changes. The developed composite hemostatic agent could overcome the limitations of existing products by integrating three crucial functions: rapid hemostasis, preventing adhesion, and promoting tissue regeneration. These findings suggest the potential for hepatocyte proliferation and tissue remodeling, which require further validation, and indicate promising applicability in complex surgical environments.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hemostatic and adhesion prevention performance of an extracellular matrix based novel agent in a mouse liver laceration model.\",\"authors\":\"Seong-Jin Kim, In Ho Kang, Hyuk Joo Ahn, Wan Jin Cho, Hyun Jung Kim, Jinho Shin, Min Kyu Sung, Jae Hoon Lee, Eunsung Jun\",\"doi\":\"10.1088/1748-605X/ae0d21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traumatic bleeding and tissue damage pose complex clinical challenges requiring rapid hemostasis and concurrent tissue regeneration. Although traditional hemostatic agents primarily focus on controlling bleeding, they generally lack additional functionalities such as preventing adhesion and promoting tissue regeneration, limiting their clinical utility. This study developed a composite regenerative hemostatic agent based on a porcine decellularized extracellular matrix (ECM) to address these limitations. This agent is designed to achieve rapid hemostasis, prevent adhesions, and promote tissue regeneration. Its functionality was evaluated using a mouse liver laceration model to explore its clinical applicability. Hemostatic efficacy was assessed by measuring the bleeding time and blood loss, and comparing the composite agent with conventional commercial hemostatic agents. Additionally, the degree of adhesion between the liver and surrounding tissues was evaluated after re-opening the abdomen to confirm the anti-adhesion effects. Tissue regeneration and inflammatory responses at the injury site were further analyzed using hematoxylin and eosin staining, Masson's trichrome staining, and Ki-67 immunohistochemistry. The ECM-based hemostatic agent significantly reduced the bleeding time compared to conventional products and markedly reduced adhesion formation. In the experimental group, the agent enhanced cell attachment and proliferation at the damaged tissue site, to facilitate the natural tissue regeneration process, without inducing inflammatory or pathological changes. The developed composite hemostatic agent could overcome the limitations of existing products by integrating three crucial functions: rapid hemostasis, preventing adhesion, and promoting tissue regeneration. These findings suggest the potential for hepatocyte proliferation and tissue remodeling, which require further validation, and indicate promising applicability in complex surgical environments.</p>\",\"PeriodicalId\":72389,\"journal\":{\"name\":\"Biomedical materials (Bristol, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ae0d21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ae0d21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

创伤性出血和组织损伤提出了复杂的临床挑战,需要快速止血和同步组织再生。虽然传统的止血药物主要集中在控制出血,但它们通常缺乏额外的功能,如防止粘连和促进组织再生,限制了它们的临床应用。本研究开发了一种基于猪脱细胞细胞外基质(ECM)的复合再生止血剂来解决这些局限性。该制剂旨在实现快速止血,防止粘连,促进组织再生。用小鼠肝裂伤模型评价其功能,探讨其临床应用价值。通过测量出血时间和出血量来评估止血效果,并与常规市售止血药物进行比较。再次开腹后评估肝脏与周围组织的粘连程度,确认抗粘连效果。采用苏木精和伊红染色、马松三色染色和Ki-67免疫组织化学进一步分析损伤部位的组织再生和炎症反应。与传统产品相比,基于ecm的止血剂显着缩短了出血时间,并显着减少了粘连的形成。在实验组中,该药物增强了受损组织部位的细胞附着和增殖,促进了组织的自然再生过程,而不引起炎症或病理改变。该复合止血剂集快速止血、防止粘连、促进组织再生三大功能于一体,克服了现有产品的局限性。这些发现表明肝细胞增殖和组织重塑的潜力,需要进一步验证,并表明在复杂的手术环境中有希望的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hemostatic and adhesion prevention performance of an extracellular matrix based novel agent in a mouse liver laceration model.

Traumatic bleeding and tissue damage pose complex clinical challenges requiring rapid hemostasis and concurrent tissue regeneration. Although traditional hemostatic agents primarily focus on controlling bleeding, they generally lack additional functionalities such as preventing adhesion and promoting tissue regeneration, limiting their clinical utility. This study developed a composite regenerative hemostatic agent based on a porcine decellularized extracellular matrix (ECM) to address these limitations. This agent is designed to achieve rapid hemostasis, prevent adhesions, and promote tissue regeneration. Its functionality was evaluated using a mouse liver laceration model to explore its clinical applicability. Hemostatic efficacy was assessed by measuring the bleeding time and blood loss, and comparing the composite agent with conventional commercial hemostatic agents. Additionally, the degree of adhesion between the liver and surrounding tissues was evaluated after re-opening the abdomen to confirm the anti-adhesion effects. Tissue regeneration and inflammatory responses at the injury site were further analyzed using hematoxylin and eosin staining, Masson's trichrome staining, and Ki-67 immunohistochemistry. The ECM-based hemostatic agent significantly reduced the bleeding time compared to conventional products and markedly reduced adhesion formation. In the experimental group, the agent enhanced cell attachment and proliferation at the damaged tissue site, to facilitate the natural tissue regeneration process, without inducing inflammatory or pathological changes. The developed composite hemostatic agent could overcome the limitations of existing products by integrating three crucial functions: rapid hemostasis, preventing adhesion, and promoting tissue regeneration. These findings suggest the potential for hepatocyte proliferation and tissue remodeling, which require further validation, and indicate promising applicability in complex surgical environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信