Antimicrobial self-healing injectable hydrogels based on chitosan, collagen, and polyvinyl alcohol for chronic wound treatment.

Lorena Duarte-Peña, Sheila I Peña-Corona, Luis E López-Jácome, Isaac Ignacio Zepeda González, Hernán Cortés, Gerardo Leyva-Gómez
{"title":"Antimicrobial self-healing injectable hydrogels based on chitosan, collagen, and polyvinyl alcohol for chronic wound treatment.","authors":"Lorena Duarte-Peña, Sheila I Peña-Corona, Luis E López-Jácome, Isaac Ignacio Zepeda González, Hernán Cortés, Gerardo Leyva-Gómez","doi":"10.1088/1748-605X/ae079f","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic wounds stand as a significant challenge to public health due to their high prevalence and complications, such as difficult-to-treat infections. The present study focuses on developing antimicrobial self-healing injectable hydrogels composed of chitosan (CS), collagen (CG), and polyvinyl alcohol (PVA) for the noninvasive treatment of chronic wounds with complex geometries. The hydrogels were synthesized through physical crosslinking via hydrogen bonds and ionic interactions, achieved through the freeze-thaw method and pH variations, resulting in materials with dynamic bonds. This feature endowed hydrogels with self-healing capability, allowing injection, adaptation to wound shapes, and recovery of properties after application. The hydrogels exhibited a vapor transmission rate of around 2500-3500 g m<sup>-2</sup>d<sup>-1</sup>, a pH range of 5.2-6.2, 40%-110% swelling, and degradation occurring within 4-48 h, which are within ranges known to support wound regeneration. Rheological analysis revealed viscoelastic and pseudoplastic behavior, and a self-healing capacity of up to 83% after deformation. Hydrogels also presented injection forces below 40 N, ensuring ease of handling. Additionally, hydrogels presented suitable blood compatibility and strong antimicrobial properties, achieving over 99% inhibition against microorganisms commonly associated with chronic wounds. Finally, all hydrogels demonstrate low irritability in the primary skin irritation assay, increased skin moisture, and decreased skin temperature, which are features that could support the wound healing process. These results highlight the potential of these materials for chronic wound treatment, offering a unique combination of natural polymer composition, injectability, self-healing, antimicrobial properties, skin-moisturizing effect, and low irritation potential.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ae079f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic wounds stand as a significant challenge to public health due to their high prevalence and complications, such as difficult-to-treat infections. The present study focuses on developing antimicrobial self-healing injectable hydrogels composed of chitosan (CS), collagen (CG), and polyvinyl alcohol (PVA) for the noninvasive treatment of chronic wounds with complex geometries. The hydrogels were synthesized through physical crosslinking via hydrogen bonds and ionic interactions, achieved through the freeze-thaw method and pH variations, resulting in materials with dynamic bonds. This feature endowed hydrogels with self-healing capability, allowing injection, adaptation to wound shapes, and recovery of properties after application. The hydrogels exhibited a vapor transmission rate of around 2500-3500 g m-2d-1, a pH range of 5.2-6.2, 40%-110% swelling, and degradation occurring within 4-48 h, which are within ranges known to support wound regeneration. Rheological analysis revealed viscoelastic and pseudoplastic behavior, and a self-healing capacity of up to 83% after deformation. Hydrogels also presented injection forces below 40 N, ensuring ease of handling. Additionally, hydrogels presented suitable blood compatibility and strong antimicrobial properties, achieving over 99% inhibition against microorganisms commonly associated with chronic wounds. Finally, all hydrogels demonstrate low irritability in the primary skin irritation assay, increased skin moisture, and decreased skin temperature, which are features that could support the wound healing process. These results highlight the potential of these materials for chronic wound treatment, offering a unique combination of natural polymer composition, injectability, self-healing, antimicrobial properties, skin-moisturizing effect, and low irritation potential.

基于壳聚糖、胶原蛋白和聚乙烯醇的抗微生物自愈注射水凝胶用于慢性伤口治疗。
慢性伤口由于其高流行率和并发症,如难以治疗的感染,对公共卫生构成重大挑战。本研究的重点是开发由壳聚糖(CS)、胶原蛋白(CG)和聚乙烯醇(PVA)组成的抗菌自愈合注射水凝胶,用于复杂几何形状慢性伤口的无创治疗。水凝胶是通过氢键和离子相互作用的物理交联合成的,通过冻融法和pH变化来实现,从而得到具有动态键的材料。这一特性赋予了水凝胶自愈能力,允许注射,适应伤口形状,并在应用后恢复性能。水凝胶的蒸汽透过率约为2500-3500 g/m²/天,pH范围为5.2-6.2,溶胀率为40-110%,降解时间为4-48 h,在已知的支持伤口再生的范围内。流变学分析显示了粘弹性和假塑性行为,变形后3分钟的自愈能力高达83%。水凝胶的注入力也低于40 N,确保易于操作。此外,水凝胶具有良好的血液相容性和强大的抗菌性能,对慢性伤口相关微生物的抑制率达到99%以上。最后,所有水凝胶在初级皮肤刺激试验中表现出低刺激性,增加皮肤水分,降低皮肤温度,这些特征可以支持伤口愈合过程。这些结果突出了这些材料在慢性伤口治疗方面的潜力,提供了天然聚合物成分、可注射性、自愈性、抗菌性能、皮肤保湿效果和低刺激潜力的独特组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信