Black phosphorus nanosheets in orthopedics: from material fabrications to therapeutic prospects.

Yong Sun, Yizhi Zhang, Ziyan Wei, Xuezhou Liu, Zhaoxi Wang, Kun Wang, Xuewen Kang
{"title":"Black phosphorus nanosheets in orthopedics: from material fabrications to therapeutic prospects.","authors":"Yong Sun, Yizhi Zhang, Ziyan Wei, Xuezhou Liu, Zhaoxi Wang, Kun Wang, Xuewen Kang","doi":"10.1088/1748-605X/ae0548","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the incidence of orthopedic diseases has increased significantly, while traditional treatments often face limitations such as limited efficacy and pronounced side effects. The development of nanomedicine technology provides novel strategies for orthopedic disease treatment. As an emerging two-dimensional nanomaterial, black phosphorus nanosheets (BPNSs) demonstrate remarkable potential in the treatment of orthopedic diseases due to their unique physicochemical properties, superior biocompatibility, and the fact that their degradation product-elemental phosphorus-constitutes an essential component of bone tissue. This review systematically summarizes the fundamental properties of BPNS, their preparation methods (mechanical exfoliation, chemical vapor deposition, liquid exfoliation, and electrochemical exfoliation), and functional modification strategies (surface covalent coupling, ion loading, and surface coating). We then focus on analyzing research progress in multiple clinical orthopedic applications including bone regeneration, bone defect repair, treatment of degenerative bone diseases, bone tumor therapy, wound healing promotion and orthopedic image-guided applications. Simultaneously, this review objectively discusses key challenges facing clinical translation of BPNS, including long-term biosafety concerns, large-scale preparation technology limitations, and insufficient mechanistic studies, while proposing future research directions. We believe that with further advancements in materials science, nanotechnology, and biomedical engineering, BPNS will become a novel nanomedicine in orthopedic treatment, offering patients more effective and safer therapeutic options.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ae0548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the incidence of orthopedic diseases has increased significantly, while traditional treatments often face limitations such as limited efficacy and pronounced side effects. The development of nanomedicine technology provides novel strategies for orthopedic disease treatment. As an emerging two-dimensional nanomaterial, black phosphorus nanosheets (BPNSs) demonstrate remarkable potential in the treatment of orthopedic diseases due to their unique physicochemical properties, superior biocompatibility, and the fact that their degradation product-elemental phosphorus-constitutes an essential component of bone tissue. This review systematically summarizes the fundamental properties of BPNS, their preparation methods (mechanical exfoliation, chemical vapor deposition, liquid exfoliation, and electrochemical exfoliation), and functional modification strategies (surface covalent coupling, ion loading, and surface coating). We then focus on analyzing research progress in multiple clinical orthopedic applications including bone regeneration, bone defect repair, treatment of degenerative bone diseases, bone tumor therapy, wound healing promotion and orthopedic image-guided applications. Simultaneously, this review objectively discusses key challenges facing clinical translation of BPNS, including long-term biosafety concerns, large-scale preparation technology limitations, and insufficient mechanistic studies, while proposing future research directions. We believe that with further advancements in materials science, nanotechnology, and biomedical engineering, BPNS will become a novel nanomedicine in orthopedic treatment, offering patients more effective and safer therapeutic options.

整形外科中的黑磷纳米片:从材料制造到治疗前景。
近年来,骨科疾病的发病率显著增加,而传统的治疗方法往往存在疗效有限、副作用大等局限性。纳米医学技术的发展为骨科疾病的治疗提供了新的策略。作为一种新兴的二维(2D)纳米材料,黑磷纳米片(BPNS)由于其独特的物理化学特性、优越的生物相容性以及其降解产物元素磷构成骨组织的基本成分这一事实,在治疗骨科疾病方面显示出显着的潜力。本文系统地综述了BPNS的基本性质、制备方法(机械剥离、化学气相沉积、液体剥离和电化学剥离)以及功能修饰策略(表面共价偶联、离子负载和表面涂层)。重点分析了骨再生、骨缺损修复、退行性骨病治疗、骨肿瘤治疗、伤口愈合促进等骨科临床应用的研究进展。同时,本文客观地讨论了BPNS临床翻译面临的主要挑战,包括长期的生物安全性问题、大规模制备技术的局限性、机制研究不足等,并提出了未来的研究方向。我们相信,随着材料科学、纳米技术和生物医学工程的进一步发展,BPNS将成为骨科治疗的重要工具,为患者提供更有效、更安全的治疗选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信