Advanced biologyPub Date : 2024-08-16DOI: 10.1002/adbi.202470083
Yansong Peng, Esak Lee
{"title":"Microphysiological Systems for Cancer Immunotherapy Research and Development (Adv. Biology 8/2024)","authors":"Yansong Peng, Esak Lee","doi":"10.1002/adbi.202470083","DOIUrl":"https://doi.org/10.1002/adbi.202470083","url":null,"abstract":"<p><b>Microphysiological Systems for Cancer Immunotherapy</b></p><p>The cover image depicts immune cells combating tumor cells at a microscopic level in a microphysiological system. The system possesses biophysical and biochemical sensors that can detect the cytokines and chemokines released by the cells and can be used to test and screen effective immunotherapies against cancer. More details can be found in article number 2300077 by Yansong Peng and Esak Lee.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adbi.202470083","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141994207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advanced biologyPub Date : 2024-08-09DOI: 10.1002/adbi.202300629
Khushbu Agrawal, Sunil Kumar
{"title":"Wavelet Collocation Method for HIV-1/HTLV-I Co-Infection Model Using Hermite Polynomial","authors":"Khushbu Agrawal, Sunil Kumar","doi":"10.1002/adbi.202300629","DOIUrl":"10.1002/adbi.202300629","url":null,"abstract":"<p>In this study, the dynamic behavior of fractional order co-infection model with human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type I (HTLV-I) is analyzed using operational matrix of Hermite wavelet collocation method. Also, the uniqueness and existence of solutions are calculated based on the fixed point hypothesis. For the fractional order co-infection model, its positivity and boundedness are demonstrated. Furthermore, different types of Ulam-Hyres stability are also discussed. The numerical solution of the model are obtained by using the operational matrix of the Hermite wavelet approach. This scheme is used to solve the system of nonlinear equations that are very fruitful and easy to implement. Additionally, the stability analysis of the numerical scheme is explained. The mathematical model taken in this work incorporates the biological characteristics of both HIV-1 and HTLV-I. After that all the equilibrium points of the fractional order co-infection model are found and their existence conditions are explored with the help of the Caputo derivative. The global stability of all equilibrium points of this model are determined with the help of Lyapunov functions and the LaSalle invariance principle. Convergence analysis is also discussed. Hermite wavelet operational matrix methods are more accurate and convergent than other numerical methods. Lastly, variations in model dynamics are found when examining different fractional order values. These findings will be valuable to biologists in the treatment of HIV-1/HTLV-I.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advanced biologyPub Date : 2024-08-07DOI: 10.1002/adbi.202400201
Kejun Qi, Danqi Jia, Shengxi Zhou, Kun Zhang, Fangxia Guan, Minghao Yao, Xiaojie Sui
{"title":"Cryopreservation of Immune Cells: Recent Progress and Challenges Ahead.","authors":"Kejun Qi, Danqi Jia, Shengxi Zhou, Kun Zhang, Fangxia Guan, Minghao Yao, Xiaojie Sui","doi":"10.1002/adbi.202400201","DOIUrl":"https://doi.org/10.1002/adbi.202400201","url":null,"abstract":"<p><p>Cryopreservation of immune cells is considered as a key enabling technology for adoptive cellular immunotherapy. However, current immune cell cryopreservation technologies face the challenges with poor biocompatibility of cryoprotection materials, low efficiency, and impaired post-thaw function, limiting their clinical translation. This review briefly introduces the adoptive cellular immunotherapy and the approved immune cell-based products, which involve T cells, natural killer cells and etc. The cryodamage mechanisms to these immune cells during cryopreservation process are described, including ice formation related mechanical and osmotic injuries, cryoprotectant induced toxic injuries, and other biochemical injuries. Meanwhile, the recent advances in the cryopreservation medium and freeze-thaw protocol for several representative immune cell type are summarized. Furthermore, the remaining challenges regarding on the cryoprotection materials, freeze-thaw protocol, and post-thaw functionality evaluation of current cryopreservation technologies are discussed. Finally, the future perspectives are proposed toward advancing highly efficient cryopreservation of immune cells.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advanced biologyPub Date : 2024-07-29DOI: 10.1002/adbi.202400213
Evelyn Echevarria-Cruz, David W McMillan, Kieran F Reid, Rodrigo J Valderrábano
{"title":"Spinal Cord Injury Associated Disease of the Skeleton, an Unresolved Problem with Need for Multimodal Interventions.","authors":"Evelyn Echevarria-Cruz, David W McMillan, Kieran F Reid, Rodrigo J Valderrábano","doi":"10.1002/adbi.202400213","DOIUrl":"https://doi.org/10.1002/adbi.202400213","url":null,"abstract":"<p><p>Spinal cord injury is associated with skeletal unloading, sedentary behavior, decreases in skeletal muscle mass, and exercise intolerance, which results in rapid and severe bone loss. To date, monotherapy with physical interventions such as weight-bearing in standing frames, computer-controlled electrically stimulated cycling and ambulation exercise, and low-intensity vibration are unsuccessful in maintaining bone density after SCI. Strategies to maintain bone density with commonly used osteoporosis medications also fail to provide a significant clinical benefit, potentially due to a unique pathology of bone deterioration in SCI. In this review, the available data is discussed on evaluating and monitoring bone loss, fracture, and physical and pharmacological therapeutic approaches to SCI-associated disease of the skeleton. The treatment of SCI-associated disease of the skeleton, the implications for clinical management, and areas of need are considered for future investigation.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advanced biologyPub Date : 2024-07-29DOI: 10.1002/adbi.202400231
Kell Grandjean da Costa, Eduardo Bodnariuc Fontes, Alekya Menta, Arthur F Kramer, Roger A Fielding, Joe Verghese, Christopher Kowaleski, Nathan Ward, Kieran F Reid
{"title":"Prefrontal Cortex Oxygenation During Exercise in Older Adults with Motoric Cognitive Risk Syndrome.","authors":"Kell Grandjean da Costa, Eduardo Bodnariuc Fontes, Alekya Menta, Arthur F Kramer, Roger A Fielding, Joe Verghese, Christopher Kowaleski, Nathan Ward, Kieran F Reid","doi":"10.1002/adbi.202400231","DOIUrl":"https://doi.org/10.1002/adbi.202400231","url":null,"abstract":"<p><p>Motoric cognitive risk syndrome (MCR) is a pre-dementia syndrome characterized by subjective memory complaints and gait impairments that may be related to lower prefrontal cortex (PFC) function. Acute bouts of aerobic exercise are shown to improve PFC function, however, the acute effects of exercise on PFC oxygenation have not yet been examined in MCR. This study aims to characterize the PFC oxygenation responses during acute exercise in older adults with MCR. Nineteen older adults with MCR performed a submaximal cycling exercise protocol. Functional near-infrared spectroscopy (fNIRS) is used to measure concentrations of oxygenated (OxyHb) and deoxygenated (DeoxyHb) hemoglobin from the PFC. There is a trend for increased OxyHb concentrations and decreased DeooxyHb concentrations during exercise. Exercise also induced significant increases in ratings of perceived exertion (RPEs) and heart rate. A significant, positive correlation between PFC OxyHb and RPEs during the cycling exercise are also observed. The findings reveal that PFC oxygenation increases during exercise in an intensity-dependent manner and the subjective perception of exertion is associated with the magnitude of PFC oxygenation. These results suggest that moderate-intensity cycling exercise may have beneficial effects on increasing cerebral blood flow in the PFC of older adults with MCR.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Qianggu Decoction Alleviated Osteoporosis by Promoting Osteogenesis of BMSCs through Mettl3-Mediated m<sup>6</sup>A Methylation.","authors":"Yuchen Wang, Weizhong Yu, Yuan E, Lining Rui, Chuan Jia, Wenke Zhu","doi":"10.1002/adbi.202400341","DOIUrl":"https://doi.org/10.1002/adbi.202400341","url":null,"abstract":"<p><p>Osteoporosis development is linked to abnormal bone marrow mesenchymal stem cells (BMSCs) differentiation. N6-methyladenosine (m<sup>6</sup>A), a prevalent mRNA modification, is known to influence BMSCs' osteogenic capacity. Qianggu decoction (QGD), a traditional Chinese medicine for osteoporosis, has unknown effects on BMSCs differentiation. This study investigates QGD's impact on BMSCs and its potential to ameliorate osteoporosis through m<sup>6</sup>A regulation. Using Sprague-Dawley (SD) rats with ovariectomy-induced osteoporosis, it is evaluated QGD's antiosteoporotic effects through micro-CT, histology, Western blotting, and osteoblastogenesis markers. QGD is found to enhance bone tissue growth and upregulate osteogenic markers Runx2, OPN, and OCN. It also promoted BMSCs osteogenic differentiation, as shown by increased calcium nodules and ALP activity. QGD treatment significantly increased m<sup>6</sup>A RNA levels and Mettl3 expression in BMSCs. Silencing Mettl3 with siRNA negated QGD's osteogenic effects. Collectively, QGD may improve BMSCs differentiation and mitigate osteoporosis, potentially through Mettl3-mediated m<sup>6</sup>A modification.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Progress in Generation of Inner Ear Organoid","authors":"Yanjun Zong, Xiaozhou Liu, Yaqi Zhang, Jiahui Zhao, Xinyu Shi, Zhengdong Zhao, Yu Sun","doi":"10.1002/adbi.202400223","DOIUrl":"10.1002/adbi.202400223","url":null,"abstract":"<p>Inner ear organoids play a crucial role in hearing research. In comparison to other animal models and 2D cell culture systems, inner ear organoids offer significant advantages for studying the mechanisms of inner ear development and exploring novel approaches to disease treatment. Inner ear organoids derived from human cells are more closely resemble normal human organs in development and function. The 3D culture system of the inner ear organoid enhances cell–cell interactions and mimics the internal environment. In this review, the progress and limitations of organoid culture methods derived from tissue-specific progenitors and pluripotent stem cells (PSCs) are summarized, which may offer new insights into generating organoids that closely resemble the inner ear in terms of morphology and function.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Engineering of Erythrocytes as Drug Carriers for Therapeutic Applications.","authors":"Baoshuo Jia, Yujie Shi, Yuling Yan, Hui Shi, Jing Zheng, Jianbo Liu","doi":"10.1002/adbi.202400242","DOIUrl":"https://doi.org/10.1002/adbi.202400242","url":null,"abstract":"<p><p>Erythrocytes, also known as red blood cells (RBCs), have garnered considerable attention as potential carriers for drug delivery, owing to their inherent properties such as biocompatibility, biodegradability, and prolonged circulation half-life. This paper presents a comprehensive overview of the role of erythrocytes in drug delivery, elucidating recent advancements in delivering a diverse array of therapeutic agents, including small molecules, nucleic acids, antibodies, protein enzymes, and nanoparticles. Two primary strategies for encapsulating drugs within erythrocytes are systematically discussed: internal loading and surface loading. Each strategy offers distinct advantages in terms of drug stability and release kinetics. Notably, the utilization of erythrocyte membrane camouflaged nanocarriers holds promise for enhancing the biocompatibility of conventional nanoparticles and facilitating targeted drug delivery. Furthermore, the broad spectrum of biomedical applications of erythrocyte-based drug delivery systems are examined, ranging from cancer treatment to diabetes management, thrombosis prevention, and immunotherapy. This review provides a comprehensive evaluation of current technologies in erythrocyte-loaded drug delivery, highlighting the strengths, weaknesses, and future directions for advancing therapeutic interventions in various disease contexts.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141733273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advanced biologyPub Date : 2024-07-22DOI: 10.1002/adbi.202400148
Lan Yao, Chengyuan Yang, J. Carolyn Graff, Guiying Wang, Gang Wang, Weikuan Gu
{"title":"From Reactive to Proactive – The Future Life Design to Promote Health and Extend the Human Lifespan","authors":"Lan Yao, Chengyuan Yang, J. Carolyn Graff, Guiying Wang, Gang Wang, Weikuan Gu","doi":"10.1002/adbi.202400148","DOIUrl":"10.1002/adbi.202400148","url":null,"abstract":"<p>Disease treatment and prevention have improved the human lifespan. Current studies on aging, such as the biological clock and senolytic drugs have focused on the medical treatments of various disorders and health maintenance. However, to efficiently extend the human lifespan to its theoretical maximum, medicine can take a further proactive approach and identify the inapparent disorders that affect the gestation, body growth, and reproductive stages of the so-called “healthy” population. The goal is to upgrade the standard health status to a new level by targeting the inapparent disorders. Thus, future research can shift from reaction, response, and prevention to proactive, quality promotion and vigor prolonging; from single disease-oriented to multiple dimension protocol for a healthy body; from treatment of symptom onset to keep away from disorders; and from the healthy aging management to a healthy promotion design beginning at the birth.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141733274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}