{"title":"The Impact of Decellularization Method on the Cytocompatibility and Wound Healing Capability of Human Amniotic Membrane","authors":"Haadia Tauseef, Kainat Ahmed, Faiza Chaudhary, Asmat Salim, Omair Anwar Mohiuddin","doi":"10.1002/adbi.202400509","DOIUrl":null,"url":null,"abstract":"<p>The decellularized human amniotic membrane (dHAM) has been evaluated as a biomaterial for various tissue engineering applications, notably as a skin dressing for wound healing. The decellularization process alters the composition and structure of the extracellular matrix consequently influencing its characteristics. The aim of the present study was to comparatively evaluate dHAM-E and dHAM-S prepared by enzymatic and salt solution treatment respectively for their microstructure using scanning electron microscopy (SEM), in vitro biocompatibility with mesenchymal stem cells (MSCs), and regenerative capability in full-thickness wound model in mice. The SEM results revealed increased porosity in dHAM-S and better MSC adhesion and proliferation as compared to dHAM-E. Moreover, wound healing capability assessed at day 7 and day 14 by histological analysis of the regenerated tissues indicated that the dHAM treated groups achieved greater re-epithelialization and remodeling than the untreated group. However, dHAM-S treated samples presented a more remodeled regenerated skin than the other groups. Furthermore, gene expression analysis of the regenerated skin displayed a higher expression of anti-inflammatory, proliferation, and keratinization marker genes in the dHAM treated groups. Overall, it was found that dHAMs are compatible with MSCs and improve wound healing. However, clear differences were observed in the bioactivity of the two dHAMs.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":"9 4","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adbi.202400509","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The decellularized human amniotic membrane (dHAM) has been evaluated as a biomaterial for various tissue engineering applications, notably as a skin dressing for wound healing. The decellularization process alters the composition and structure of the extracellular matrix consequently influencing its characteristics. The aim of the present study was to comparatively evaluate dHAM-E and dHAM-S prepared by enzymatic and salt solution treatment respectively for their microstructure using scanning electron microscopy (SEM), in vitro biocompatibility with mesenchymal stem cells (MSCs), and regenerative capability in full-thickness wound model in mice. The SEM results revealed increased porosity in dHAM-S and better MSC adhesion and proliferation as compared to dHAM-E. Moreover, wound healing capability assessed at day 7 and day 14 by histological analysis of the regenerated tissues indicated that the dHAM treated groups achieved greater re-epithelialization and remodeling than the untreated group. However, dHAM-S treated samples presented a more remodeled regenerated skin than the other groups. Furthermore, gene expression analysis of the regenerated skin displayed a higher expression of anti-inflammatory, proliferation, and keratinization marker genes in the dHAM treated groups. Overall, it was found that dHAMs are compatible with MSCs and improve wound healing. However, clear differences were observed in the bioactivity of the two dHAMs.