Metals and Materials International最新文献

筛选
英文 中文
Impact of the Rare Earth Element La on the Microstructure and Mechanical Properties of the Al/Steel Bimetallic Composite Interface Fabricated by Liquid–Solid Casting 稀土元素 La 对通过液固铸造制造的铝/钢双金属复合材料界面的微观结构和力学性能的影响
IF 3.5 3区 材料科学
Metals and Materials International Pub Date : 2024-07-06 DOI: 10.1007/s12540-024-01729-2
Feng Mao, Anzu Guo, Po Zhang, Yishuo He, Songhao Liu, Shizhong Wei, Chong Chen, Hong Xu
{"title":"Impact of the Rare Earth Element La on the Microstructure and Mechanical Properties of the Al/Steel Bimetallic Composite Interface Fabricated by Liquid–Solid Casting","authors":"Feng Mao, Anzu Guo, Po Zhang, Yishuo He, Songhao Liu, Shizhong Wei, Chong Chen, Hong Xu","doi":"10.1007/s12540-024-01729-2","DOIUrl":"https://doi.org/10.1007/s12540-024-01729-2","url":null,"abstract":"<p>This research aimed to explore the influence of the rare-earth element La on the interface microstructure and mechanical properties of Al/steel bimetallic composites produced through liquid–solid casting. The addition of the rare earth element La refined the morphology of eutectic silicon and ensured its uniform and continuous distribution. The interface structure of the Al/steel bimetallic composite exhibited distinct layering, primarily comprising two layers. The first layer, termed reaction layer I, comprised Al<sub>5</sub>Fe<sub>2</sub> and τ<sub>1</sub>-Al<sub>2</sub>Fe<sub>3</sub>Si<sub>3</sub> phases. While the second layer, termed reaction layer II, consisted of Al<sub>13</sub>Fe<sub>4</sub>, τ<sub>5</sub>-Al<sub>7</sub>Fe<sub>2</sub>Si, and τ<sub>6</sub>-Al<sub>9</sub>Fe<sub>2</sub>Si<sub>2</sub> phases. The addition of La did not alter the types of intermetallic compounds present in the Al/steel reaction layer. As the La content increased to 0.3%, there was a notable reduction in the average thickness of both reaction layers I and II, reaching a minimum. The presence of La effectively restrained the growth of intermetallic compounds within the reaction layer. Consequently, the shear strength of the Al/steel bimetallic sample exhibited an initial increase followed by a subsequent decrease with increasing La content. With the addition of 0.3% La, the shear strength of the sample peaked at 30.1 MPa, representing a 66% increase.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"13 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141575949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved Multi-Directional Forging Process and Its Effect on Microstructure and Three-Directional Mechanical Properties of 2195 Al-Li Alloy 改进的多向锻造工艺及其对 2195 Al-Li 合金显微组织和三向力学性能的影响
IF 3.5 3区 材料科学
Metals and Materials International Pub Date : 2024-07-06 DOI: 10.1007/s12540-024-01725-6
Dengliang Tong, Youping Yi, Hailin He, Shiquan Huang, Jiaguo Tang
{"title":"Improved Multi-Directional Forging Process and Its Effect on Microstructure and Three-Directional Mechanical Properties of 2195 Al-Li Alloy","authors":"Dengliang Tong, Youping Yi, Hailin He, Shiquan Huang, Jiaguo Tang","doi":"10.1007/s12540-024-01725-6","DOIUrl":"https://doi.org/10.1007/s12540-024-01725-6","url":null,"abstract":"<p>Reticular crystal phases and abnormally coarse grains are key problems that restrict the improvement of the mechanical properties and uniformity of Al-Li alloys. The effects of the multidirectional forging (MDF) process on the microstructure at the edge and center and the three-directional mechanical properties of the 2195 Al-Li alloy were investigated. The results show that the strong deformation resistance produced by one heat forging at 400 ℃ with seven upsetting and six stretching (400-7U6S-1) fully broke the reticular crystal phases at the grain boundaries and obtained the dispersed phase structure. The high density of dislocations accumulated by strong deformation promoted the dissolution of the dispersed secondary phases, and the area fraction of the secondary phase particles at the edge and center decreased from 3.88% and 1.97–0.75% and 0.61%, respectively, which prevented the occurrence of intergranular fractures and dramatically improved the ductility. Meanwhile, the dissolution of the second phases enhanced the precipitation force of the T1 phases and inhibited the precipitation of δ’ phases. Furthermore, the higher density of dislocations significantly increased the nucleation rate of dynamic recrystallization and eliminated the abnormally coarse grains, and thus acquired a uniform ultra-fined grain structure and the average grain diameter was reduced from 159 μm to 17 μm. The tensile strength, yield strength and elongation in the width direction increased to 592 MPa, 545 MPa and 8.0%, respectively, and increased by 7.2%, 7.2% and 90.5%, respectively. In particular, the maximum difference in the elongation of the forgings in the width direction decreased from 83.3 to 11.1%.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"10 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141575947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructure and Wear Resistance of a Ni–Fe–Si–B Amorphous Composite Coating by Laser Cladding 激光熔覆 Ni-Fe-Si-B 非晶复合涂层的微观结构和耐磨性
IF 3.5 3区 材料科学
Metals and Materials International Pub Date : 2024-07-06 DOI: 10.1007/s12540-024-01727-4
Xuanhong Hao, Hongxi Liu, Xiaowei Zhang, Yueyi Wang, Chen Yang, Yaxia Liu
{"title":"Microstructure and Wear Resistance of a Ni–Fe–Si–B Amorphous Composite Coating by Laser Cladding","authors":"Xuanhong Hao, Hongxi Liu, Xiaowei Zhang, Yueyi Wang, Chen Yang, Yaxia Liu","doi":"10.1007/s12540-024-01727-4","DOIUrl":"https://doi.org/10.1007/s12540-024-01727-4","url":null,"abstract":"<p>In this study, a Ni–Fe–Si–B amorphous composite coating is coated on H13 steel by laser cladding. Coatings are systematically investigated for their microstructure, phase composition, tribological behavior, and mechanical characteristics. X-ray diffraction results demonstrate that the cladding layer can be divided into the interface, transition, and compositionally stable zones, where the coating has both crystalline and amorphous phases, with up to 57% of the coating being amorphous. According to scanning electron microscopy and transmission electron microscopy analyses, the middle and surface regions of the coating mainly consist of (Fe<sub>0.5</sub>Ni<sub>0.5</sub>)<sub>3</sub>Si, Fe<sub>2</sub>B, Fe<sub>2</sub>NiB, Ni<sub>31</sub>Si<sub>12</sub>, and amorphous phases. The in-situ generated Fe<sub>2</sub>B phase is uniformly distributed within the coating, leading to a significant enhancement in microhardness. The greatest hardness of the coating is approximately 927.04 HV<sub>0.2</sub>. The composite coating exhibits excellent wear resistance, which is approximately 1.71 times greater than that of the substrate. Minor abrasive wear constitutes the primary wear mechanism for the coatings.</p>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"51 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141575948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Dynamic Precipitation of γ′ Phase on Dynamic Strain Aging in a Fe-Ni-Based Superalloy 铁-镍基超合金中 γ′ 相的动态沉淀对动态应变时效的影响
IF 3.5 3区 材料科学
Metals and Materials International Pub Date : 2024-07-05 DOI: 10.1007/s12540-024-01728-3
Yeshun Huang, Rui Zhang, Zijian Zhou, Peng Zhang, Jingbo Yan, Yong Yuan, Yuefeng Gu, Chuanyong Cui, Yizhou Zhou, Xiaofeng Sun
{"title":"Influence of Dynamic Precipitation of γ′ Phase on Dynamic Strain Aging in a Fe-Ni-Based Superalloy","authors":"Yeshun Huang, Rui Zhang, Zijian Zhou, Peng Zhang, Jingbo Yan, Yong Yuan, Yuefeng Gu, Chuanyong Cui, Yizhou Zhou, Xiaofeng Sun","doi":"10.1007/s12540-024-01728-3","DOIUrl":"https://doi.org/10.1007/s12540-024-01728-3","url":null,"abstract":"<p>Discontinuous plastic flow due to dynamic strain aging (DSA) in a Fe-Ni-based superalloy was investigated by tensile tests in the temperature range from 500 ºC to 800 ºC with different γ′ fraction. Type A serrations were observed in the solutionized and as-aged specimens at 500 ºC, which was a result of diffusion of carbon atoms. The stress amplitude was affected by the dislocation density induced by the presence of γ′ phase. Type C serrations occurred in the solutionized and under-aged samples at 650 ºC and 700 ºC. With the increase of γ′ phase fraction in the initial microstructure, the stress amplitude and duration of type C serrations decreased at 700 ºC. It was demonstrated that the dominant deformation mechanisms of under-aged specimens at 650 ºC and 700 ºC were weakly-coupled dislocation pairs shearing the fine γ′ particles with slip bands, while the deformation mechanism transformed to dislocation climbing at 800 ºC. The model linking serration amplitude, solute concentration at the dislocation line and dislocation density was used to analyze the effect of γ′ dynamic precipitation on the DSA. The dynamic precipitation of γ′ phase during tensile significantly alters the DSA behavior by removing substitutional solutes responsible for γ′ precipitation from the matrix.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"1 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141550251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review on Wire Arc Additive Manufacturing of Magnesium Alloys: Wire Preparation, Defects and Properties 镁合金线弧增材制造综述:线材制备、缺陷和性能
IF 3.5 3区 材料科学
Metals and Materials International Pub Date : 2024-07-04 DOI: 10.1007/s12540-024-01724-7
Yi Li, Siqi Yin, Guangzong Zhang, Changfeng Wang, Xiao Liu, Renguo Guan
{"title":"A Review on Wire Arc Additive Manufacturing of Magnesium Alloys: Wire Preparation, Defects and Properties","authors":"Yi Li, Siqi Yin, Guangzong Zhang, Changfeng Wang, Xiao Liu, Renguo Guan","doi":"10.1007/s12540-024-01724-7","DOIUrl":"https://doi.org/10.1007/s12540-024-01724-7","url":null,"abstract":"<p>Wire arc additive manufacturing (WAAM) is widely used in the rapid prototyping of large parts because of its high deposition rate, high material utilization rate as well as low cost. However, the manufacturing process of magnesium alloy wires is relatively difficult, and the defects and performance of parts are difficult to control. This paper reviews the preparation process of magnesium alloy wires, which aims to achieve surface control and performance optimization of wires. Due to the quality of wires and the high processing temperature, the defects often occur in the deposition process. The common defects of magnesium alloy parts by WAAM are discussed and solutions are given to minimize it. The research advances in microstructure, mechanical properties, damping properties and corrosion properties are summarized. WAAM has performance advantages compared to casting, but the microstructure is inhomogeneous and the properties are anisotropic. Several quality improvement strategies are reported to improve properties and reduce defects. The effectiveness and applicability of these strategies are discussed, and the future prospects of WAAM for magnesium alloys are proposed. The preparation of high-performance wires, the formation mechanism of defects and microstructure are three keys for future improvement of WAAM for magnesium alloy.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"5 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141550252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Pre-Deformation on Precipitation in Al–Zn–Mg–Cu Alloy 预变形对铝锌镁铜合金沉淀的影响
IF 3.5 3区 材料科学
Metals and Materials International Pub Date : 2024-06-29 DOI: 10.1007/s12540-024-01718-5
Yujin Rhee, Elisabeth Thronsen, Oskar Ryggetangen, Calin D. Marioara, Randi Holmestad, Equo Kobayashi
{"title":"Effect of Pre-Deformation on Precipitation in Al–Zn–Mg–Cu Alloy","authors":"Yujin Rhee, Elisabeth Thronsen, Oskar Ryggetangen, Calin D. Marioara, Randi Holmestad, Equo Kobayashi","doi":"10.1007/s12540-024-01718-5","DOIUrl":"https://doi.org/10.1007/s12540-024-01718-5","url":null,"abstract":"<p>In this work, strengthening effects and evolution of precipitates in a pre-deformed Al–Zn–Mg–Cu alloy during ageing were investigated using Vickers hardness measurements, tensile tests, and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). It was found that all cold rolled conditions had higher mechanical strength than the non-deformed condition for all ageing times and that this effect increases at higher deformation ratios. It was also found that the non-deformed condition has a higher age hardening response than that of the cold rolled conditions. A homogeneous precipitate distribution was observed in the non-deformed condition, while the cold rolled conditions contained non-uniformly distributed precipitates due to the introduced dislocations. This led to larger precipitate sizes and a reduction in the precipitate number densities in the pre-deformed conditions. HAADF-STEM analysis revealed differences in the fraction of different precipitate types between the non-deformed and the cold rolled conditions. η', η<sub>2,</sub> and disordered η phase were observed in the non-deformed condition, while η', η<sub>2</sub> and the newly identified Y phase were observed in the cold rolled conditions. The disordered η phase contained structural units of the η<sub>1</sub> phase and was associated with reducing the lattice misfit between this phase and the Al matrix. Formation of the Y phase was related to an accelerated nucleation rate in the regions of high dislocation density.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"18 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141531029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Nb on Microstructure and Wear Property of Laser Cladding CoCrFeNiTiNbx High-Entropy Alloys Coatings 铌对激光熔覆 CoCrFeNiTiNbx 高熵合金涂层微观结构和磨损性能的影响
IF 3.5 3区 材料科学
Metals and Materials International Pub Date : 2024-06-29 DOI: 10.1007/s12540-024-01720-x
Lin Ding, Hongxin Wang, Quan Xiumin
{"title":"Effect of Nb on Microstructure and Wear Property of Laser Cladding CoCrFeNiTiNbx High-Entropy Alloys Coatings","authors":"Lin Ding, Hongxin Wang, Quan Xiumin","doi":"10.1007/s12540-024-01720-x","DOIUrl":"https://doi.org/10.1007/s12540-024-01720-x","url":null,"abstract":"<p>A group of CoCrFeNiTiNb<sub>x</sub> high entropy alloys (HEAs) coatings were produced by laser cladding. The effect of Nb content on the microstructure and wear resistance of the HEAs coatings was investigated. The results indicated that adding Nb promoted the phase transition from BCC to FCC and the formation of Fe<sub>2</sub>Nb Laves phase, The diffraction peaks of FCC and BCC phases were firstly shifted to smaller angle as Nb content was increased, and then shifted to larger angle. Adding Nb promoted brittle fracture of more coarse dendrites to formed fine dendrites and equiaxed crystals homogenizing the microstructure in the HEAs coatings, as well as the formation of dense dislocations and dislocation interaction. The microhardness of the HEAs coatings was firstly increased and then decreased as Nb content was increased, and the change of the mass loss and friction coefficient was opposite trend. Compared with CoCrFeNiTiNb<sub>0.0</sub> HEAs coatings, the microhardness of the CoCrFeNiTiNb<sub>1.0</sub> HEAs coatings was improved by 25.00%, the mass loss was reduced by 28.27%, and and friction coefficient was the lowest. The wear mechanism of the HEAs coatings was transformed from the adhesive wear and oxidative wear accompanied by the abrasive wear to the abrasive wear accompanied by the adhesive wear and oxidative wear as Nb content was gradually increased.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"78 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141505065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Laser Shock Peening on Mechanical Properties of Wire Arc Additive Manufactured Grade 91 Steel and Monel-400 Bimetallic Components 激光冲击强化对线弧添加剂制造的 91 级钢和 Monel-400 双金属部件机械性能的影响
IF 3.5 3区 材料科学
Metals and Materials International Pub Date : 2024-06-29 DOI: 10.1007/s12540-024-01722-9
Sivakumar Munusamy, J Jerald
{"title":"Impact of Laser Shock Peening on Mechanical Properties of Wire Arc Additive Manufactured Grade 91 Steel and Monel-400 Bimetallic Components","authors":"Sivakumar Munusamy, J Jerald","doi":"10.1007/s12540-024-01722-9","DOIUrl":"https://doi.org/10.1007/s12540-024-01722-9","url":null,"abstract":"<p>This study investigates the effects of Laser Shock Peening (LSP) on the mechanical properties and microstructure of Wire Arc Additive Manufactured (WAAM) bimetallic components made of Grade 91 Steel and Monel-400. LSP, a surface enhancement technique, was applied to address the residual stress and enhance the mechanical performance of these bimetallic components. Electron Backscatter Diffraction (EBSD) analysis post-LSP showed refined grain structures, contributing to the observed enhancements in mechanical properties. The research revealed that LSP treatment increased the tensile residual stress at the bimetallic interface from 109 ± 2.5 MPa to 185.9 ± 2.5 MPa, indicating a strengthening of the bimetallic interface. The tensile strength of the Grade 91 Steel part increased from 1140 ± 6.5 MPa to 1280 ± 4.5 MPa after LSP, while the Monel-400 section showed a slight decrease in tensile strength from 516 ± 2.5 MPa to 511 ± 6 MPa but an increase in elongation from 31 to 38.5%. Furthermore, microhardness at the interface improved, with a rise from 267 ± 3 HV0.1 to 303 ± 4 HV0.1 post-LSP. The enhanced properties of the bimetallic components are particularly beneficial for applications in the petrochemical and marine industries, where the combined resistance to thermal and corrosive environments is critical. This study provides a new understanding of the application of LSP in improving the mechanical properties of WAAM-produced bimetallic components.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"16 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurements of Enthalpies of Mixing of Sn–Ga–In Ternary Alloy System by Calorimetric Technique 利用量热技术测量锡-镓-铟三元合金体系的混合焓
IF 3.5 3区 材料科学
Metals and Materials International Pub Date : 2024-06-28 DOI: 10.1007/s12540-024-01726-5
Vikrant Singh, Dileep Pathote, Dheeraj Jaiswal, Kamalesh K. Singh, C. K. Behera
{"title":"Measurements of Enthalpies of Mixing of Sn–Ga–In Ternary Alloy System by Calorimetric Technique","authors":"Vikrant Singh, Dileep Pathote, Dheeraj Jaiswal, Kamalesh K. Singh, C. K. Behera","doi":"10.1007/s12540-024-01726-5","DOIUrl":"https://doi.org/10.1007/s12540-024-01726-5","url":null,"abstract":"<p>The ultimate objective of this study is to find a way to replace toxic lead-based solder with a non-toxic replacement that retains all of the desirable characteristics of the conventional solder. In this work, the integral and partial enthalpy of mixing for Sn–Ga–In ternary alloy systems were measured by the help of drop calorimeter along six of the cross sections at different temperatures of 673 K, 723 K and 773 K. Pieces of pure tin were dropped into molten Ga<sub>0.25</sub>In<sub>0.75</sub>, Ga<sub>0.50</sub>In<sub>0.50</sub>, Ga<sub>0.75</sub>In<sub>0.25</sub> alloys and pieces of pure Indium into Ga<sub>0.25</sub>Sn<sub>0.75</sub>, Ga<sub>0.50</sub>Sn<sub>0.50</sub>, Ga<sub>0.75</sub>Sn<sub>0.25</sub>. In order to calculate the interaction parameter, Redlich–Kister–Muggianu (RKM) model was used which considers the substitutional solution mechanism. Geometric models i.e. Kohler, Muggianu, Chou, Toop, and Hillert have been used to determine the integral mixing enthalpies and compared with experimental data. It has been seen a good agreement between the theoretical models and results of this study.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"29 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141505005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Effect of Silicide and α2 Phase on the Creep Behavior of TC25G Alloy at High Temperature 更正:硅化物和 α2 相对 TC25G 合金高温蠕变行为的影响
IF 3.3 3区 材料科学
Metals and Materials International Pub Date : 2024-06-27 DOI: 10.1007/s12540-024-01719-4
Zhuomeng Liu, Shewei Xin, Yongqing Zhao, Bohao Dang
{"title":"Correction: Effect of Silicide and α2 Phase on the Creep Behavior of TC25G Alloy at High Temperature","authors":"Zhuomeng Liu,&nbsp;Shewei Xin,&nbsp;Yongqing Zhao,&nbsp;Bohao Dang","doi":"10.1007/s12540-024-01719-4","DOIUrl":"10.1007/s12540-024-01719-4","url":null,"abstract":"","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"30 8","pages":"2169 - 2170"},"PeriodicalIF":3.3,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信