Journal of Thermal Spray Technology最新文献

筛选
英文 中文
A Particle-Based Numerical Model for Impact-Induced Bonding in Cold Spray 基于粒子的冷喷中冲击诱导粘合的数值模型
IF 3.2 3区 材料科学
Journal of Thermal Spray Technology Pub Date : 2024-08-15 DOI: 10.1007/s11666-024-01803-6
M. Reza Hirmand, Jonathan Tang, Hamid Jahed
{"title":"A Particle-Based Numerical Model for Impact-Induced Bonding in Cold Spray","authors":"M. Reza Hirmand,&nbsp;Jonathan Tang,&nbsp;Hamid Jahed","doi":"10.1007/s11666-024-01803-6","DOIUrl":"10.1007/s11666-024-01803-6","url":null,"abstract":"<div><p>A computational framework is proposed for modelling particle bonding in cold spray. The model is based on the commonly-held view that bonding is a consequence of jetting, namely, the large plastic strains occurring at extreme rates upon particle impact. The model incorporates a bonding criterion at contacting boundaries by introducing a novel strain-like history variable referred to as the <i>bonding parameter</i> conjugate to a rate-dependent evolution law. In doing so, an analogy is made with classic damage mechanics where bonding is viewed as a similar but opposite process to fracture. Two new material constants are introduced, namely, the <i>bonding toughness</i> and the <i>bonding toughness rate</i>. Furthermore, a numerical implementation of the model in the Material Point Method (MPM) is presented which, thanks to a proposed regularization technique, is free of non-physical dependence on discretization parameters. The mesh-free nature of the MPM allows avoiding the numerical issues in conventional Lagrangian and Eulerian methods such as mesh distortion and artificial dissipation. The model is calibrated numerically for aluminum-aluminum material pair using an in-house computer program. Several numerical results are presented to demonstrate that the model can accurately capture material jetting and directly relate it to bonding within the simulation.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 6","pages":"1886 - 1913"},"PeriodicalIF":3.2,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Analysis of Quenching Stress in Thermal Spray Process Using SPH Method 使用 SPH 方法对热喷涂过程中的淬火应力进行数值分析
IF 3.2 3区 材料科学
Journal of Thermal Spray Technology Pub Date : 2024-08-14 DOI: 10.1007/s11666-024-01824-1
Bhanu Prakash Maddineni, Doruk Isik, Song-Charng Kong
{"title":"Numerical Analysis of Quenching Stress in Thermal Spray Process Using SPH Method","authors":"Bhanu Prakash Maddineni,&nbsp;Doruk Isik,&nbsp;Song-Charng Kong","doi":"10.1007/s11666-024-01824-1","DOIUrl":"10.1007/s11666-024-01824-1","url":null,"abstract":"<div><p>Thermal spray is an important surface treatment technique used in many industrial applications. Thermal spray processes involve molten droplets sprayed onto substrates. Heat transfer between the droplet and the substrate at different temperatures results in sharp temperature gradients and a phase change. Quenching stresses arise as a combined effect of phase change and the thermal mismatch between materials. It is important to characterize quenching stress for predicting material durability. However, such characterization is challenging due to the complex physics involved. In this study, the smoothed particle hydrodynamics method is used to predict the quenching stress in the thermal spray process for different droplet materials, including yttrium-stabilized zirconia (YSZ), stainless steel (SS), aluminum (Al), and alumina (Al<sub>2</sub>O<sub>3</sub>) impinging on various substrate materials. The present numerical model is validated against the experiments and previous numerical studies for splat behavior, time evolution of substrate temperature, and quenching stress. A parametric study investigates the main contributing factors to quench stress. The parametric study reveals that elevated substrate temperatures reduce thermal gradient, thus quenching stress. Compared to the differences in droplet material, the quenching stress shows increased sensitivity to the substrate material. Additionally, materials with high thermal diffusivity, such as SS, exhibit lower quenching stress due to their ability to dissipate heat quickly. Conversely, materials with lower thermal diffusivity, such as YSZ, show higher quenching stress because of slower heat dissipation. These findings provide critical insights into optimizing thermal spray processes to minimize quenching stress and enhance material durability.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 6","pages":"1851 - 1866"},"PeriodicalIF":3.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wear and Corrosion Resistances of Arc-Sprayed FeCr Alloy and Fe-Based Coatings for Boiler Heat Exchanger Pipelines 用于锅炉热交换器管道的电弧喷涂铁铬合金和铁基涂层的耐磨性和抗腐蚀性
IF 3.2 3区 材料科学
Journal of Thermal Spray Technology Pub Date : 2024-08-14 DOI: 10.1007/s11666-024-01828-x
Wangping Wu, Sheng Lin
{"title":"Wear and Corrosion Resistances of Arc-Sprayed FeCr Alloy and Fe-Based Coatings for Boiler Heat Exchanger Pipelines","authors":"Wangping Wu,&nbsp;Sheng Lin","doi":"10.1007/s11666-024-01828-x","DOIUrl":"10.1007/s11666-024-01828-x","url":null,"abstract":"<div><p>Wear and corrosion of boiler tubes in coal-based boilers are one of the serious problems. Trying to solve this issue, FeCr alloy with 45%Cr-content coating and Fe-based coating with 13%Cr-content were arc sprayed onto carbon steel substrates to enhance both the wear and corrosion resistance of boiler heat exchanger pipelines. The microstructure, chemical compositions, and phases of the coatings were analyzed using a scanning electron microscopy, energy-dispersive spectrometer, and x-ray diffraction, respectively. The wear resistance of the coatings was assessed at 25 and 300 °C using a ball-on-disk wear tester. The corrosion resistance of the coatings was evaluated based on seawater immersion, electrochemical impedance, and polarization tests. The porosities of FeCr alloy and Fe-based coatings were 4.05 and 5.75%, respectively. The microhardness values of FeCr alloy and Fe-based coatings were 377.50 ± 46.88 HV<sub>0.5</sub> and 666.69 ± 57.64 HV<sub>0.5</sub>, respectively. FeCr alloy coating with lamellar structure was mainly composed of FeCr solid solution phase and a small amount of Cr oxide and Fe<sub>3</sub>O<sub>4</sub> phases, and Fe-based coating was composed of a mixture phase of amorphous and crystalline, and a small amount of Fe<sub>3</sub>O<sub>4</sub> phase. FeCr alloy coating had better wear resistance than Fe-based coating at both 25 and 300 °C. The wear mechanisms of the coatings were also studied. The corrosion resistance of FeCr alloy coating was better than that of Fe-based coating in corrosive solutions. Therefore, FeCr alloy coating can provide better high-temperature wear resistance and anticorrosion performance for boiler heat exchanger piping, compared with Fe-based coating.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 6","pages":"2068 - 2088"},"PeriodicalIF":3.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Porosity on Abradability of YSZ Coatings 孔隙率对 YSZ 涂层耐磨性的影响
IF 3.2 3区 材料科学
Journal of Thermal Spray Technology Pub Date : 2024-08-08 DOI: 10.1007/s11666-024-01825-0
Dan Guo, Xiaolei Hu, Jianming Liu, Tong Liu
{"title":"Effect of Porosity on Abradability of YSZ Coatings","authors":"Dan Guo,&nbsp;Xiaolei Hu,&nbsp;Jianming Liu,&nbsp;Tong Liu","doi":"10.1007/s11666-024-01825-0","DOIUrl":"10.1007/s11666-024-01825-0","url":null,"abstract":"<div><p>The effect of porosity on the wear behavior of YSZ abradable coating under simulated working conditions was studied using the high-temperature and ultra-high-speed abradability test rig. The results show that the porosity significantly influences the macroscopic morphology and abradability of the YSZ coating at the experimental temperatures of 1000 °C, with the blade tip velocity of 350 m/s, and the feed rate of 50 μm/s. The wear degree of the blade gradually decreases as porosity increases, and the incursion depth ratio (IDR) dramatically decreases. When the porosity reaches its maximum value, the wear scar of the coating is smoothest, and there is no discernible wear on the blade, the IDR value reaches its minimum, and the abradability of the coating reaches its maximum. Besides, brittle fracture in the YSZ coating with high porosity is concluded to be the reason for better abradability.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 6","pages":"2089 - 2096"},"PeriodicalIF":3.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141927632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influencing Factors and Process Optimization of Al/SiC Powder-cored Wires by Plasma Transferred Wire Arc Spraying 等离子传输线弧喷涂 Al/SiC 粉末包芯线的影响因素和工艺优化
IF 3.2 3区 材料科学
Journal of Thermal Spray Technology Pub Date : 2024-08-07 DOI: 10.1007/s11666-024-01823-2
Ming Liu, Qi-qing Peng, Yan-fei Huang, Ping-hua Li, Guo-long Tan, Xuan-ping Luo, Qian-sen Qiao, Hai-dou Wang, Wei Lang
{"title":"Influencing Factors and Process Optimization of Al/SiC Powder-cored Wires by Plasma Transferred Wire Arc Spraying","authors":"Ming Liu,&nbsp;Qi-qing Peng,&nbsp;Yan-fei Huang,&nbsp;Ping-hua Li,&nbsp;Guo-long Tan,&nbsp;Xuan-ping Luo,&nbsp;Qian-sen Qiao,&nbsp;Hai-dou Wang,&nbsp;Wei Lang","doi":"10.1007/s11666-024-01823-2","DOIUrl":"10.1007/s11666-024-01823-2","url":null,"abstract":"<div><p>Wire thermal spraying, one of the significant coating preparation technologies in the field of thermal spraying, has the advantages of low cost, high material utilization rate and fast coating deposition. Powder-cored wires, with easily controllable compositions, are used as spraying materials to prepare functional coatings with special properties. Coatings prepared by traditional wire thermal spraying technologies, mainly including wire flame spraying (WFS), wire arc spraying (WAS) and plasma wire spraying, have some defects, such as weak bonding strength and high porosity. In this paper, the plasma transferred wire arc spraying (PTWAS) technology was innovatively proposed, by which Al/SiC powder-cored wires were successfully sprayed to deposit the aluminum (Al)/Nicalon (SiC) composite coating. Furthermore, the influences of spraying current (<i>I</i>), argon (Ar) flow rate (<i>L</i><sub>Ar</sub>), hydrogen (H<sub>2</sub>) flow rate (<i>L</i><sub>H2</sub>) and other factors on Al/Sic powder-cored wires prepared by PTWAS and the optimization of the coating preparation process were mainly studied <i>via</i> the single factor method and the response surface methodology. After experimental exploration and analysis, the optimized process parameters were finally determined as follows: <i>L</i><sub>Ar</sub> was 120 L min<sup>−1</sup>, <i>I</i> was 160 A, <i>L</i><sub>H2</sub> was 5 L min<sup>−1</sup>, the spraying distance was 100 mm, the wire feeding speed (<i>V</i>) was 0.18 m s<sup>−1</sup>, and the distance between the wire and nozzle (<i>d</i>) was 10 mm. It was found in the test that the porosity of the optimized Al/SiC composite coating was only 1.6%, the average microhardness was 102 HV<sub>0.1</sub>, and the average bonding strength was 36.5 MPa. The comprehensive properties of this coating were better than those of the Al/SiC composite coatings prepared by WFS and WAS.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 6","pages":"2167 - 2183"},"PeriodicalIF":3.2,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermo-Structural Coupled Finite Element Analysis of Repair Process for Steam Turbine Blade Using Laser-Directed Energy Deposition Method 利用激光能量沉积法对蒸汽轮机叶片修复过程进行热结构耦合有限元分析
IF 3.2 3区 材料科学
Journal of Thermal Spray Technology Pub Date : 2024-08-06 DOI: 10.1007/s11666-024-01814-3
Masayuki Arai, Seiji Fujita, Yuxian Meng, Taisei Izumi
{"title":"Thermo-Structural Coupled Finite Element Analysis of Repair Process for Steam Turbine Blade Using Laser-Directed Energy Deposition Method","authors":"Masayuki Arai,&nbsp;Seiji Fujita,&nbsp;Yuxian Meng,&nbsp;Taisei Izumi","doi":"10.1007/s11666-024-01814-3","DOIUrl":"10.1007/s11666-024-01814-3","url":null,"abstract":"<div><p>This study presents a numerical additive manufacturing simulation aimed at simulating the shape recovery process of a steam turbine blade damaged by corrosion, using laser-directed energy deposition (LDED). The simulation integrates the finite element (FE) method with heat conduction and thermo-elastoplastic constitutive equations, incorporating phase transformation. The additive manufacturing process by LDED was modeled using the death-birth algorithm, wherein a deposition layer is defined as a virtual element. Its stiffness and thermal properties activated when the laser irradiation regions overlapped. In this study, the shape of the virtual element was determined based on the cross-sectional shape of the deposition layer manufactured under various laser conditions. To validate the numerical simulation results, additive manufacturing was conducted for one pass deposition in the width direction at the center of a cantilever-supported plate made of SUS304 steel, and the changes in displacement at the free edges with respect to the process time were compared. The obtained FE results are in good agreement with the experimental results. Finally, an FE simulation was performed for the shape recovery of a steam turbine blade thinned due to corrosion damage. The results revealed that the residual stress component becomes more compressive as the laser output decreases and scanning speed increases, which is advantageous for improving the fatigue strength of steam turbine blades.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 6","pages":"1815 - 1826"},"PeriodicalIF":3.2,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11666-024-01814-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Tungsten Repair Technology by Atmospheric Plasma Spraying of Tungsten and Friction Stir Processing 通过大气等离子喷涂钨和摩擦搅拌加工开发钨修复技术
IF 3.2 3区 材料科学
Journal of Thermal Spray Technology Pub Date : 2024-08-05 DOI: 10.1007/s11666-024-01820-5
Phuangphaga Daram, Yoshiaki Morisada, Takuya Ogura, Masahiro Kusano, JuHyeon Yu, Makoto Fukuda, Hidetoshi Fujii, Seiji Kuroda, Makoto Watanabe
{"title":"Development of Tungsten Repair Technology by Atmospheric Plasma Spraying of Tungsten and Friction Stir Processing","authors":"Phuangphaga Daram,&nbsp;Yoshiaki Morisada,&nbsp;Takuya Ogura,&nbsp;Masahiro Kusano,&nbsp;JuHyeon Yu,&nbsp;Makoto Fukuda,&nbsp;Hidetoshi Fujii,&nbsp;Seiji Kuroda,&nbsp;Makoto Watanabe","doi":"10.1007/s11666-024-01820-5","DOIUrl":"10.1007/s11666-024-01820-5","url":null,"abstract":"<div><p>Tungsten (W) has a high melting point, excellent thermal conductivity, and irradiation resistance, making it the most promising plasma facing material for divertors in fusion reactors, which are currently under development. However, since the divertor is exposed to an extremely harsh environment, it is considered necessary to develop suitable and cost-effective repair techniques. In this study, the applicability of the atmospheric plasma spraying (APS) method using a gas shroud as a repair technique for W components was investigated, in particular the possibility of strengthening the repaired part by applying friction stir processing (FSP) as a post-treatment. It was found that the application of a gas shroud can suppress in-flight oxidation to some extent, even when the W is deposited in air. In addition, the FSP treatment reduced grain size and porosity, resulting in an increase in microhardness of approximately 37.5% compared to the base material (W substrate) and 203.5% compared to the as-sprayed material. The gas shroud APS and FSP post-treatments have been shown to have potential as repair techniques for tungsten components in future fusion reactors.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 6","pages":"1840 - 1850"},"PeriodicalIF":3.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving Superior Durability of Environmental Barrier Coatings through the Use of a Modified Silicon Bond Coat 通过使用改性硅粘结涂层实现环境阻隔涂层的超强耐久性
IF 3.2 3区 材料科学
Journal of Thermal Spray Technology Pub Date : 2024-08-05 DOI: 10.1007/s11666-024-01821-4
Dianying Chen
{"title":"Achieving Superior Durability of Environmental Barrier Coatings through the Use of a Modified Silicon Bond Coat","authors":"Dianying Chen","doi":"10.1007/s11666-024-01821-4","DOIUrl":"10.1007/s11666-024-01821-4","url":null,"abstract":"<div><p>The growth of a thermally grown oxide (TGO) layer has been identified as a major driving force for the failure of environmental barrier coatings (EBCs). It is always desirable to reduce the TGO growth rate in order to achieve a highly durable EBC system. In this study, an Al<sub>2</sub>O<sub>3</sub>-modified Si bond coat was developed for EBC applications. Both a Yb<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>/Si baseline EBC and a Yb<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>/(Si-Al<sub>2</sub>O<sub>3</sub>)-modified EBC were deposited using the air plasma spray process. The TGO growth behavior and cycling life of the EBCs were evaluated at 1316 °C in a 90% H<sub>2</sub>O (g) + 10% air environment. The TGO growth rate in the baseline EBC is over four times faster than that of the modified EBC. The modified EBC survived 1000 cycles of steam testing without failure, while the baseline EBC has an average life of 576 cycles under identical conditions. The superior durability of the modified EBC can be attributed to the significantly reduced TGO growth rate.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 6","pages":"2097 - 2103"},"PeriodicalIF":3.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Process Optimization of Ni60A Coating Preparation by Plasma Spraying-Cladding Technique 利用等离子喷涂-包埋技术制备 Ni60A 涂层的工艺优化
IF 3.2 3区 材料科学
Journal of Thermal Spray Technology Pub Date : 2024-07-29 DOI: 10.1007/s11666-024-01818-z
Ming Liu, Qi-qing Peng, Yan-fei Huang, Guo-zheng Ma, Xue-wei Zhu, Zhong-yu Piao, Hai-dou Wang, Xuan-ping Luo
{"title":"Process Optimization of Ni60A Coating Preparation by Plasma Spraying-Cladding Technique","authors":"Ming Liu,&nbsp;Qi-qing Peng,&nbsp;Yan-fei Huang,&nbsp;Guo-zheng Ma,&nbsp;Xue-wei Zhu,&nbsp;Zhong-yu Piao,&nbsp;Hai-dou Wang,&nbsp;Xuan-ping Luo","doi":"10.1007/s11666-024-01818-z","DOIUrl":"10.1007/s11666-024-01818-z","url":null,"abstract":"<div><p>Ni60A spraying-cladding coatings were innovatively prepared on the surface of the Q235 steel substrate by plasma spraying-cladding technique. Ni60A powder with a particle size of 30 <i>μ</i>m was further selected as the optimum spraying-cladding powder based on preliminary numerical simulation. The spraying-cladding distanceØ was optimized, and the optimum distance was determined as 18 and 16 mm, respectively, for the internal feeding process and external feeding process. The microhardness of the spraying-cladding coating could reach 875.6 HV during the internal feeding process at a spraying-cladding distance of 18 mm, and reach 791.6 HV during the external feeding process at a spraying-cladding distance of 16 mm. Meanwhile, the thermal effect of the plasma spraying-cladding technique on the Q235 steel substrate was less.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 6","pages":"1771 - 1782"},"PeriodicalIF":3.2,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141869275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Nano-Fly Ash Additive on the Mechanical and Microstructural Properties of Plasma-Sprayed Mullite Coatings 纳米飞灰添加剂对等离子喷涂莫来石涂层的机械和微观结构特性的影响
IF 3.1 3区 材料科学
Journal of Thermal Spray Technology Pub Date : 2024-07-24 DOI: 10.1007/s11666-024-01817-0
Torsak Boonthai, Peerawatt Nunthavarawong, Panadda Sheppard, Hathaipat Koiprasert, Nuttacha Phupradit, Pravet Kerdwattha
{"title":"Effect of Nano-Fly Ash Additive on the Mechanical and Microstructural Properties of Plasma-Sprayed Mullite Coatings","authors":"Torsak Boonthai, Peerawatt Nunthavarawong, Panadda Sheppard, Hathaipat Koiprasert, Nuttacha Phupradit, Pravet Kerdwattha","doi":"10.1007/s11666-024-01817-0","DOIUrl":"https://doi.org/10.1007/s11666-024-01817-0","url":null,"abstract":"<p>The effect of MCrAlY and nano-fly ash additive powders on the mechanical and microstructural properties of mullite coatings was examined in this work. Three distinct mullite-based coatings, namely M (100% mullite), MM (95% mullite − 5% MCrAlY), and MMF (90% mullite − 5% MCrAlY − 5% nano-fly ash), were deposited onto a martensitic stainless steel (AISI 410) substrate through air-plasma spraying. MMF coatings achieved the best coating integrity during the experimental trials, with a porosity of 7.65%, and an optimum fracture toughness of 1.40 MPa m<sup>0.5</sup>. The results revealed that incorporating MCrAlY particles into mullite coatings resulted in an optimal hardness of 638 HV<sub>1</sub>. The addition of nano-fly ash significantly increased the adherence of MMF coatings to the AISI 410 substrate, which is critical to their durability and efficacy. Furthermore, the MMF coatings demonstrated a remarkable 60% reduction in crystallite size, yielding a finer size of 47 nm. Furthermore, dislocation density increased by 125%, reaching 44.8 × 10<sup>−5</sup> nm<sup>−2</sup>, compared to MM coatings. It was also revealed that the presence of MCrAlY and fly ash nanoparticles increased shear resistance by restricting the mobility of the shear plane, obtaining the highest adhesion strength of 76 MPa. These findings show that combining MCrAlY particles with nano-fly ash in mullite coatings provides various benefits, including enhanced hardness, crystal characteristics, adhesion, and shear resistance.</p>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"13 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141771726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信