Yunfeng Li, Yajie Qiu, Yan Shi, Guangjun Jiang, Pucun Bai
{"title":"激光熔覆“三明治”复合涂层的显微组织及抗冲击性能","authors":"Yunfeng Li, Yajie Qiu, Yan Shi, Guangjun Jiang, Pucun Bai","doi":"10.1007/s11666-025-02002-7","DOIUrl":null,"url":null,"abstract":"<div><p>Because of harsh working conditions, the tooth surface of the active wheel gear ring experiences severe corrosion and wear under high-impact loads. Current tooth surface reinforcement techniques do not substantially increase impact and corrosion resistance. Hence, this study designed a ‘sandwich’ composite coating with an interfacial layer, a toughening layer and a wear-resistant layer on the ZG42CrMoA material. The coating comprises <i>γ</i>-Ni, M<sub>23</sub>C<sub>6</sub>, MoNi, MoNi<sub>4</sub>, Ni<sub>3</sub>B, WC and W<sub>2</sub>C. The interface layer removes pores and inclusions in the substrate, thereby creating a strong metallurgical bond and fortified coating-substrate adhesion. The toughened layer, enriched with Mo at grain boundaries, impedes Cr diffusion. Moreover, tungsten carbide (WC) nanoparticles refine the grain structure, strengthen grain boundaries, limit dislocation slip and improve impact resistance. The toughened layer absorbs energy via plastic deformation, further augmenting impact resistance. As a result, the composite coating exhibits better impact toughness than high-frequency quenched specimens. Impact tests and finite element analysis demonstrate that the composite coating’s maximum compressive stress is 253.11 MPa, compared to 288.63 MPa for the high-frequency quenched layer. Due to its high hardness and brittleness, the high-frequency quenched layer endures restricted plastic deformation under the impact, developing stress concentration zones that lead to cracks and fracture and lowered impact resistance. Alternatively, the <i>γ</i>-Ni solid solution in the composite coating provides good toughness, allowing more plastic deformation, decreased stress, alleviated stress concentration and significantly improved impact resistance.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"34 5","pages":"1873 - 1892"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and Impact Resistance of ‘Sandwich’ Composite Coating by Laser Cladding\",\"authors\":\"Yunfeng Li, Yajie Qiu, Yan Shi, Guangjun Jiang, Pucun Bai\",\"doi\":\"10.1007/s11666-025-02002-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Because of harsh working conditions, the tooth surface of the active wheel gear ring experiences severe corrosion and wear under high-impact loads. Current tooth surface reinforcement techniques do not substantially increase impact and corrosion resistance. Hence, this study designed a ‘sandwich’ composite coating with an interfacial layer, a toughening layer and a wear-resistant layer on the ZG42CrMoA material. The coating comprises <i>γ</i>-Ni, M<sub>23</sub>C<sub>6</sub>, MoNi, MoNi<sub>4</sub>, Ni<sub>3</sub>B, WC and W<sub>2</sub>C. The interface layer removes pores and inclusions in the substrate, thereby creating a strong metallurgical bond and fortified coating-substrate adhesion. The toughened layer, enriched with Mo at grain boundaries, impedes Cr diffusion. Moreover, tungsten carbide (WC) nanoparticles refine the grain structure, strengthen grain boundaries, limit dislocation slip and improve impact resistance. The toughened layer absorbs energy via plastic deformation, further augmenting impact resistance. As a result, the composite coating exhibits better impact toughness than high-frequency quenched specimens. Impact tests and finite element analysis demonstrate that the composite coating’s maximum compressive stress is 253.11 MPa, compared to 288.63 MPa for the high-frequency quenched layer. Due to its high hardness and brittleness, the high-frequency quenched layer endures restricted plastic deformation under the impact, developing stress concentration zones that lead to cracks and fracture and lowered impact resistance. Alternatively, the <i>γ</i>-Ni solid solution in the composite coating provides good toughness, allowing more plastic deformation, decreased stress, alleviated stress concentration and significantly improved impact resistance.</p></div>\",\"PeriodicalId\":679,\"journal\":{\"name\":\"Journal of Thermal Spray Technology\",\"volume\":\"34 5\",\"pages\":\"1873 - 1892\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Spray Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11666-025-02002-7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-025-02002-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Microstructure and Impact Resistance of ‘Sandwich’ Composite Coating by Laser Cladding
Because of harsh working conditions, the tooth surface of the active wheel gear ring experiences severe corrosion and wear under high-impact loads. Current tooth surface reinforcement techniques do not substantially increase impact and corrosion resistance. Hence, this study designed a ‘sandwich’ composite coating with an interfacial layer, a toughening layer and a wear-resistant layer on the ZG42CrMoA material. The coating comprises γ-Ni, M23C6, MoNi, MoNi4, Ni3B, WC and W2C. The interface layer removes pores and inclusions in the substrate, thereby creating a strong metallurgical bond and fortified coating-substrate adhesion. The toughened layer, enriched with Mo at grain boundaries, impedes Cr diffusion. Moreover, tungsten carbide (WC) nanoparticles refine the grain structure, strengthen grain boundaries, limit dislocation slip and improve impact resistance. The toughened layer absorbs energy via plastic deformation, further augmenting impact resistance. As a result, the composite coating exhibits better impact toughness than high-frequency quenched specimens. Impact tests and finite element analysis demonstrate that the composite coating’s maximum compressive stress is 253.11 MPa, compared to 288.63 MPa for the high-frequency quenched layer. Due to its high hardness and brittleness, the high-frequency quenched layer endures restricted plastic deformation under the impact, developing stress concentration zones that lead to cracks and fracture and lowered impact resistance. Alternatively, the γ-Ni solid solution in the composite coating provides good toughness, allowing more plastic deformation, decreased stress, alleviated stress concentration and significantly improved impact resistance.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.