Journal of Thermal Spray Technology最新文献

筛选
英文 中文
Synergistic Effect of MoS2 and Ag on High-Temperature Tribology of Self-Lubricating Ni-Based Composite Coatings by Cold Spray Deposition MoS2和Ag对冷喷涂自润滑镍基复合涂层高温摩擦学的协同效应
IF 3.2 3区 材料科学
Journal of Thermal Spray Technology Pub Date : 2025-02-19 DOI: 10.1007/s11666-025-01959-9
Rohit Kumar Singh Gautam, Vivek Mani Tripathi, Jitendra Kumar Gautam, Vineeta Adhikari, Subhash Mishra, Pushkar Jha, Ekta Upadhyay, Hemant Nautiyal, Rajiv Kumar
{"title":"Synergistic Effect of MoS2 and Ag on High-Temperature Tribology of Self-Lubricating Ni-Based Composite Coatings by Cold Spray Deposition","authors":"Rohit Kumar Singh Gautam,&nbsp;Vivek Mani Tripathi,&nbsp;Jitendra Kumar Gautam,&nbsp;Vineeta Adhikari,&nbsp;Subhash Mishra,&nbsp;Pushkar Jha,&nbsp;Ekta Upadhyay,&nbsp;Hemant Nautiyal,&nbsp;Rajiv Kumar","doi":"10.1007/s11666-025-01959-9","DOIUrl":"10.1007/s11666-025-01959-9","url":null,"abstract":"<div><p>As technology advances, tribo-coupling components, viz. gears, seals, bearings etc., frequently function under severe conditions, and this enhanced the demand of effective lubrication for reduced friction and wear of contacting interfaces. The optimal content of solid lubricants in the matrix is a viable alternative to acquire the desired lubrication in extended regime of temperatures. The present work investigates the tribological characteristics of cold sprayed Ni-based self-lubricating composite coatings with varying content of Ag (5, 10, 12.5 and 15 wt.%) and fixed concentration of MoS<sub>2</sub> (10 wt.%). The mechanical, microstructural and the tribological properties were evaluated from room temperature (RT) to 800 °C. The results revealed that the coating having 12.5 wt.% of Ag along with 10 wt.% of MoS<sub>2</sub> has delivered superior lubricity among all compositions in terms of lower coefficient of friction COF (0.18) and wear rate 5 × 10<sup>-5</sup> mm<sup>3</sup>/Nm at 800 °C. The average COF, without the use of Ag and MoS<sub>2</sub>, has attained (0.49) at 800 °C. However, the coating containing 12.5 wt.% of Ag has attained increased COF (0.38) and wear rate 7.1 × 10<sup>-5</sup> mm<sup>3</sup>/Nm at 400 °C; thereafter, a declining trend was observed. The improved frictional properties were accredited to the synergistic effects of impregnated solid lubricants and novel lubricious phases (Ag<sub>2</sub>MoO<sub>4</sub>, Ag<sub>2</sub>Mo<sub>2</sub>O<sub>7</sub>, Ag<sub>2</sub>Mo<sub>4</sub>O<sub>13</sub> NiO, etc.) formed on the worn surface. The observed wear mechanisms were correlated with the morphologies and tribo-chemical reaction between the contacting interfaces.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"34 4","pages":"1281 - 1297"},"PeriodicalIF":3.2,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143919146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
With Gratitude to Our Guest Editors and Reviewers for Their Critical Contributions in 2024 感谢我们的特邀编辑和审稿人在2024年做出的重要贡献
IF 3.2 3区 材料科学
Journal of Thermal Spray Technology Pub Date : 2025-02-18 DOI: 10.1007/s11666-025-01962-0
{"title":"With Gratitude to Our Guest Editors and Reviewers for Their Critical Contributions in 2024","authors":"","doi":"10.1007/s11666-025-01962-0","DOIUrl":"10.1007/s11666-025-01962-0","url":null,"abstract":"","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"34 4","pages":"1017 - 1020"},"PeriodicalIF":3.2,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143919151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Ni-Coated-Al2O3 Addition on Corrosion and Wear Resistance of Laser Cladded Fe-Based Composite Coatings 添加ni - al2o3对激光熔覆铁基复合涂层耐蚀耐磨性能的影响
IF 3.2 3区 材料科学
Journal of Thermal Spray Technology Pub Date : 2025-02-17 DOI: 10.1007/s11666-025-01952-2
Weifeng Xin, Erguang Fu, Fanchang Dai, Xinlong Wei, Chao Zhang
{"title":"Effect of Ni-Coated-Al2O3 Addition on Corrosion and Wear Resistance of Laser Cladded Fe-Based Composite Coatings","authors":"Weifeng Xin,&nbsp;Erguang Fu,&nbsp;Fanchang Dai,&nbsp;Xinlong Wei,&nbsp;Chao Zhang","doi":"10.1007/s11666-025-01952-2","DOIUrl":"10.1007/s11666-025-01952-2","url":null,"abstract":"<div><p>In this paper, Fe-based composite coatings reinforced by Ni-coated-Al<sub>2</sub>O<sub>3</sub> particles were prepared by laser cladding to investigate the influence of Ni-coated-Al<sub>2</sub>O<sub>3</sub> addition on corrosion and wear resistance. Microstructure and microhardness of Fe-based composite coatings were characterized by using x-ray diffraction, scanning electron microscope and Vickers hardness tester. Corrosion behavior was evaluated using potentiodynamic polarization tests and electrochemical impedance spectroscopy experiments. Wear behavior was conducted by a dry reciprocating sliding wear tester. Results show that Fe-based composite coatings exhibit smooth columnar microstructure and grain refinement induced by the addition of Al<sub>2</sub>O<sub>3</sub> ceramic particles. The microhardness of the Fe-based composite coating is much higher than that of the substrate and increases with the increase in Ni-coated-Al<sub>2</sub>O<sub>3</sub> content. The corrosion current density of Fe-based composite coatings is 5.84 × 10<sup>-4</sup> A·cm<sup>-2</sup> for pure Fe-based coating, 2.37 × 10<sup>-4</sup> A·cm<sup>-2</sup> for 1 wt.% Ni-coated-Al<sub>2</sub>O<sub>3</sub> coating, 2.09 × 10<sup>-4</sup> A·cm<sup>-2</sup> for 3 wt.% Ni-coated-Al<sub>2</sub>O<sub>3</sub> coating and 10.70 × 10<sup>-4</sup> A·cm<sup>-2</sup> for 5 wt.% Ni-coated-Al<sub>2</sub>O<sub>3</sub> coating, respectively. Corrosion resistance can be notably enhanced by appropriate addition of Ni-coated-Al<sub>2</sub>O<sub>3</sub>. Also, wear resistance of Fe-based composite coating has been significantly improved by the addition of Ni-coated-Al<sub>2</sub>O<sub>3</sub>. The Fe-based composite coating with 3 wt.% Ni-coated-Al<sub>2</sub>O<sub>3</sub> displays the highest wear resistance. The wear mechanism of Fe-based composite coatings is a mixture of abrasive wear and adhesive wear as well as oxidation wear mechanisms. The proposed Fe-based composite coatings can be applied to improve the corrosion and wear resistance of components in contact with high-speed fluids, such as hydraulic turbine blades and ship propellers.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"34 4","pages":"1220 - 1228"},"PeriodicalIF":3.2,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143919140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Analytical Model of the Thermal Conductivity of Thin Porous Ceramic Coatings 多孔陶瓷薄膜导热系数的解析模型
IF 3.2 3区 材料科学
Journal of Thermal Spray Technology Pub Date : 2025-02-12 DOI: 10.1007/s11666-025-01954-0
Lei Zhao, Pei-feng Hsu
{"title":"An Analytical Model of the Thermal Conductivity of Thin Porous Ceramic Coatings","authors":"Lei Zhao,&nbsp;Pei-feng Hsu","doi":"10.1007/s11666-025-01954-0","DOIUrl":"10.1007/s11666-025-01954-0","url":null,"abstract":"<div><p>Thermal conductivity is a key property of thermal barrier coatings, which play a critical role in protecting components in high-temperature environments such as gas turbines and jet engines. This paper presents an analytical model for evaluating the thermal conductivity of thin, porous ceramic thermal barrier coatings. The analytical model incorporates factors such as porosity, pore orientation, and aspect ratio, which are extracted from scanning electron microscopy images. The model, which provides a comprehensive understanding of heat transfer mechanisms within coatings, was verified through comparisons with numerical simulation results from a multiphysics software tool and experimental measurements. Overall, the study provides insight into the factors affecting the thermal conductivity of porous yttrium-stabilized zirconia coatings and presents an analytical method to predict conductivity based on the coating's microstructure. Since the microstructure evolves during the service, a time-dependent thermal conductivity can be predicted if the microstructure changes over time become available. The model offers capabilities beyond those of conventional numerical models and demonstrates good agreement with experimental measurements of thermal conductivity. The information is critical for the design of thermal barrier coatings systems and thermal performance evaluation during service.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"34 4","pages":"1147 - 1159"},"PeriodicalIF":3.2,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143919283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Situ Spray Bead Acquisition and Analysis for Coating Thickness Predictions 涂层厚度预测的原位喷雾珠采集与分析
IF 3.2 3区 材料科学
Journal of Thermal Spray Technology Pub Date : 2025-02-11 DOI: 10.1007/s11666-025-01953-1
Uroš Hudomalj, Ivo Aschwanden, Lukas Weiss, Majid Nabavi, Konrad Wegener
{"title":"In Situ Spray Bead Acquisition and Analysis for Coating Thickness Predictions","authors":"Uroš Hudomalj,&nbsp;Ivo Aschwanden,&nbsp;Lukas Weiss,&nbsp;Majid Nabavi,&nbsp;Konrad Wegener","doi":"10.1007/s11666-025-01953-1","DOIUrl":"10.1007/s11666-025-01953-1","url":null,"abstract":"<div><p>Coating thickness is considered to be one of the most important characteristics of thermal spray coatings. Therefore, it has long been the goal to be able to predict the coating thickness that ensues when coating an arbitrary part. A commonly applied approach is to determine the coating deposit based on a series of spray spot tests and use that for modeling the coating. Another option is to conduct spray bead tests, which better reflect the conditions during the coating. This work suggests a novel approach for in situ acquisition of the spray beads and their analysis. The acquisition is based on a 3D camera to scan the sample before and after depositing of a spray bead. The approach allows for their streamlined evaluation, enabling better understanding of spray bead formation and their modeling. The suggested analysis of spray beads includes uncertainty evaluation. This enables estimation of model prediction uncertainties which has been omitted in the previous works on the topic. The analysis shows that a relative expanded uncertainty of 10% (at 95% level of confidence) can be expected for the coating thickness prediction for the simplest scenario of coating a flat sample sprayed perpendicularly at a constant spray distance and spray speed.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"34 2-3","pages":"893 - 901"},"PeriodicalIF":3.2,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11666-025-01953-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143688482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of SiC Content on the Microstructure and Mechanical Properties of AlCoCrFeNiTi Laser Cladding High-Entropy Alloy Coatings SiC含量对AlCoCrFeNiTi激光熔覆高熵合金涂层组织和力学性能的影响
IF 3.2 3区 材料科学
Journal of Thermal Spray Technology Pub Date : 2025-02-11 DOI: 10.1007/s11666-024-01924-y
Z.-Q. Zhang, W. Niu, Y.-W. Lei, Y. Zheng
{"title":"The Effect of SiC Content on the Microstructure and Mechanical Properties of AlCoCrFeNiTi Laser Cladding High-Entropy Alloy Coatings","authors":"Z.-Q. Zhang,&nbsp;W. Niu,&nbsp;Y.-W. Lei,&nbsp;Y. Zheng","doi":"10.1007/s11666-024-01924-y","DOIUrl":"10.1007/s11666-024-01924-y","url":null,"abstract":"<div><p>45 steel is widely used in manufacturing industry, but the properties of 45 steel sometimes fail to meet the requirements of special applications. High-entropy AlCoCrFeNiTi coatings with different SiC contents (0, 10, 20, and 30 wt.%) were deposited on 45 steel substrates by laser cladding technology. With the increase in SiC content, the coatings consisted of BCC1 + BCC2 phases when the SiC content was 0 and 10 wt.% and TiC and Ni<sub>4</sub>Ti<sub>3</sub>-reinforced phase + BCC1 when the SiC content was 20 and 30 wt.%, respectively. The microhardness and wear resistance of the coating increased with increasing SiC content. When the SiC content was 30 wt.%, the average hardness of the cladding coating was maximum 943HV<sub>0.3</sub>, which is about 3.7 times that of the substrate, and the coating possessed the lowest wear mass loss and friction factor. The wear mode changes from adhesive wear and oxidative wear to abrasive wear as the SiC content increased.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"34 4","pages":"1195 - 1207"},"PeriodicalIF":3.2,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143919235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards Highly Dense Yb-Silicate Microstructures Deposited by Air Plasma Spray for Environmental Barrier Coating Applications II: Plasma Gas Composition, Feedstock, and Anode Orifice Comparisons 用空气等离子体喷涂沉积环境屏障涂层的高密度硅酸钇微结构研究II:等离子体气体成分、原料和阳极孔比较
IF 3.2 3区 材料科学
Journal of Thermal Spray Technology Pub Date : 2025-02-10 DOI: 10.1007/s11666-025-01937-1
Edward J. Gildersleeve V, Emine Bakan, Robert Vaßen
{"title":"Towards Highly Dense Yb-Silicate Microstructures Deposited by Air Plasma Spray for Environmental Barrier Coating Applications II: Plasma Gas Composition, Feedstock, and Anode Orifice Comparisons","authors":"Edward J. Gildersleeve V,&nbsp;Emine Bakan,&nbsp;Robert Vaßen","doi":"10.1007/s11666-025-01937-1","DOIUrl":"10.1007/s11666-025-01937-1","url":null,"abstract":"<div><p>In all air plasma sprayed (APS) environmental barrier coating (EBC) applications, the predominant goal is to achieve maximum coating density, gas tightness, and/or hermeticity prior to subjecting it to harsh environments (i.e., high-temperature impingement of high-velocity water vapor). The microstructures of APS coatings are historically understood to be influenced by the input processing parameters. Beyond the local deposition rate (surface speed, feeding rate) explored in Part I, there are further extrinsic processing parameters such as plasma gas composition, feedstock choice, and anode orifice dimensions which can be tuned, but have not been fully explored in the context of EBCs. Screening these ancillary extrinsic inputs in a rigorous and systematic way presents challenges in determining which control variable(s) to select to gain meaningful insights. A constant particle temperature distribution (not average particle temperature) in the spray stream was held as a constraint, and the aforementioned extrinsic parameters were varied. As in Part I, a qualitative microstructural approach toward examining the presence (or absence) of advantageous vertical thin microcracks in the as-deposited coating was taken. For certain conditions, a Dense Vertically Macrocracked structure was achieved. Concurrent synthesis of these results offers further insights into process selection and parameter design can be gained.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"34 4","pages":"1452 - 1462"},"PeriodicalIF":3.2,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11666-025-01937-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143918955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Slurry Abrasion Resistance of HVOF-Sprayed VC and CoNi Coatings: A Response Surface Methodology Approach 用响应面法研究hvof喷涂VC和CoNi涂层的浆料耐磨性
IF 3.2 3区 材料科学
Journal of Thermal Spray Technology Pub Date : 2025-02-10 DOI: 10.1007/s11666-025-01957-x
Vikrant Singh, Samandeep Kaur, Vijay Kumar, Anuj Bansal, Anil Kumar Singla
{"title":"Exploring Slurry Abrasion Resistance of HVOF-Sprayed VC and CoNi Coatings: A Response Surface Methodology Approach","authors":"Vikrant Singh,&nbsp;Samandeep Kaur,&nbsp;Vijay Kumar,&nbsp;Anuj Bansal,&nbsp;Anil Kumar Singla","doi":"10.1007/s11666-025-01957-x","DOIUrl":"10.1007/s11666-025-01957-x","url":null,"abstract":"<div><p>Slurry abrasion (SA) evaluation is critical for assessing the wear resistance of coated surfaces under harsh operating conditions. This study investigates the performance of HVOF-sprayed vanadium carbide (VC) and VC-50CoNi coatings applied to SS316 substrates, focusing on their behavior under varying loads, slurry concentrations, and abrasive particle sizes. The mass loss during SA testing was normalized with respect to the exposed surface area (mg/cm<sup>2</sup>), providing a clear comparative analysis. Under a load of 137.2 N, particle size of 100 µm, and slurry concentration of 25,000 ppm, the VC coating exhibited the lowest mass loss of 0.158 mg/cm<sup>2</sup>, while the VC-50CoNi coating demonstrated a moderate mass loss of 0.302 mg/cm<sup>2</sup>. These results were compared to the uncoated SS316 substrate, which suffered the highest mass loss of 0.773 mg/cm<sup>2</sup>. The novelty of this study lies in identifying the underlying mechanisms contributing to the wear behavior of these coatings. SEM analysis revealed that the superior wear resistance of VC coatings is attributed to their high hardness (1365 HV), which minimizes abrasive material removal through spalling and delamination. In contrast, the addition of Co-Ni in VC-50CoNi coatings enhances toughness, reducing crack propagation but slightly increasing mass loss due to fatigue cracking and surface roughening. The response surface methodology effectively optimized the process parameters, with statistical tests confirming the accuracy of the predictive model. These findings provide new insights into the design of wear-resistant coatings for industrial applications, emphasizing the balance between hardness and toughness achieved in composite coatings.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"34 4","pages":"1251 - 1268"},"PeriodicalIF":3.2,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143918957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of HIPing Post-Treatment on the Cavitation Erosion in HVOF Thermally Sprayed WC-NiCrBSi Coatings HIPing后处理对HVOF热喷涂WC-NiCrBSi涂层空化侵蚀的影响
IF 3.2 3区 材料科学
Journal of Thermal Spray Technology Pub Date : 2025-02-10 DOI: 10.1007/s11666-025-01926-4
A. Algoburi, R. Ahmed, V. Kumar
{"title":"Influence of HIPing Post-Treatment on the Cavitation Erosion in HVOF Thermally Sprayed WC-NiCrBSi Coatings","authors":"A. Algoburi,&nbsp;R. Ahmed,&nbsp;V. Kumar","doi":"10.1007/s11666-025-01926-4","DOIUrl":"10.1007/s11666-025-01926-4","url":null,"abstract":"<div><p>Cavitation erosion caused by the energy released from collapsing bubbles is a major failure mode of engineering components in hydraulic and marine environments. Thermal spray coatings provide a cost-effective and environmentally friendly solution to improve the cavitation erosion resistance of components. Functionally graded WC-NiCrBSi coatings were deposited by the high-velocity oxy-fuel (HVOF) process and post-retreated using hot isostatic pressing (HIPing) to improve the interlamellar bonding at two different temperatures of 850 °C and 1200 °C. ASTM G32 cavitation erosion tests were conducted in seawater for a total test time of 24 hours. Microstructural and post-cavitation test investigations were conducted on the coating surface and cross sections using scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS). Microstructural phases were investigated using x-ray diffraction (XRD). Changes in microstructure, hardness, fracture toughness, and porosity due to HIPing post-treatment are discussed. The results of this investigation show that the cavitation erosion resistance of coatings improves after HIPing post-treatment. This improvement was five times the cavitation wear resistance of as-sprayed coating at the HIPing temperature of 1200 °C, surpassing the cavitation erosion resistance of the AISI 440 C steel substrate. Microstructural changes leading to the strengthening of interlamellar and carbide-matrix boundaries, which reduce intergranular and transgranular crack propagation, are attributed to this improvement. A combination of the improvement in hardness, elastic modulus, porosity, and fracture toughness due to microstructural changes resulted in the superior cavitation erosion resistance of HIPed coatings.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"34 2-3","pages":"992 - 1015"},"PeriodicalIF":3.2,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11666-025-01926-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143688478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Multishot Damage of Supersonic Plasma Sprayed Al2O3-PF Composite Coating Deposited on Insulator 绝缘子上超音速等离子喷涂Al2O3-PF复合涂层的多弹损伤
IF 3.2 3区 材料科学
Journal of Thermal Spray Technology Pub Date : 2025-02-10 DOI: 10.1007/s11666-025-01949-x
Cong Wang, Yunlong Zhu, Haidou Wang, Ming Liu, Wen Tian, Xiang Meng, Yafeng Gao, Shuying Chen, Guozheng Ma, Guo Jin
{"title":"The Multishot Damage of Supersonic Plasma Sprayed Al2O3-PF Composite Coating Deposited on Insulator","authors":"Cong Wang,&nbsp;Yunlong Zhu,&nbsp;Haidou Wang,&nbsp;Ming Liu,&nbsp;Wen Tian,&nbsp;Xiang Meng,&nbsp;Yafeng Gao,&nbsp;Shuying Chen,&nbsp;Guozheng Ma,&nbsp;Guo Jin","doi":"10.1007/s11666-025-01949-x","DOIUrl":"10.1007/s11666-025-01949-x","url":null,"abstract":"<div><p>Al<sub>2</sub>O<sub>3</sub>-PF composite coating is effectively generated on the surface of glass fiber reinforced resin by supersonic plasma spraying technology, which prolonged the service life of traditional insulator in the small-diameter launch devices with high-density current. The thermal properties of Al<sub>2</sub>O<sub>3</sub>-PF composite coatings had been extensively explored. Moreover, the protective effect of Al<sub>2</sub>O<sub>3</sub>-PF composite coating on the traditional glass fiber reinforced resin insulator in terms of ablative carbonization, metal contamination and insulating performance during the launching process was thoroughly investigated. The results indicate that Al<sub>2</sub>O<sub>3</sub>-PF composite coating has attractive thermal stability. After the same number of launching tests, the metal deposition on the surface of Al<sub>2</sub>O<sub>3</sub>-PF composite coating is less than that of traditional glass fiber reinforced resin insulator, as is the degree of ablative carbonization at the muzzle. These factors achieve a considerable improvement in insulation performance of the insulator during the linear drive experiment. Especially after ten launching tests, surface resistivity of the Al<sub>2</sub>O<sub>3</sub>-PF composite coating in the acceleration section is around 10<sup>6</sup> times that of the GFEP insulator. The research provides an efficient method to improve the service life and stability of traditional glass fiber reinforced resin insulator.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"34 4","pages":"1463 - 1474"},"PeriodicalIF":3.2,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143918956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信