Kai Zhang, Shuo Chen, Wenlong Wang, Fangfang Wu, Huiru Wang, Hongyou Bian, Weijun Liu
{"title":"Effect of Heat Treatment Temperature on the Microstructure and Properties of Sm2O3/FeCoNiCrMn High-Entropy Alloy Composite Coatings by Laser Cladding","authors":"Kai Zhang, Shuo Chen, Wenlong Wang, Fangfang Wu, Huiru Wang, Hongyou Bian, Weijun Liu","doi":"10.1007/s11666-025-02004-5","DOIUrl":null,"url":null,"abstract":"<div><p>To optimize the heat treatment temperature for enhancing the microstructure and performance of Sm<sub>2</sub>O<sub>3</sub>/FeCoNiCrMn high-entropy alloy (HEA) composite coatings fabricated by laser cladding, the microstructural evolution and mechanical properties of coatings heat-treated at 500 °C, 700 °C, and 900 °C were investigated. XRD, SEM, and EDS analyses revealed that the phase composition remained primarily face-centered cubic (FCC), with secondary phases Co<sub>5.24</sub>Sm<sub>0.97</sub> and Fe<sub>7</sub>Sm, regardless of temperature. Increasing the treatment temperature from 500 to 900 °C elevated surface residual stress from 412.35 to 461.89 MPa and intensified internal elemental segregation. At 500 °C, the coatings exhibited optimal performance, achieving the highest average hardness (317 HV<sub>0.4</sub>), lowest wear rate (0.11 mm<sup>3</sup>/N·m), smallest wear depth (134.27 μm), and minimal elemental segregation, surpassing untreated samples in hardness, wear resistance, and corrosion resistance. These findings highlight the critical influence of heat treatment temperature on HEA composite coatings, with 500 °C identified as the optimal temperature for enhancing mechanical and corrosion properties. This study provides valuable insights for applying laser cladding and heat treatment technologies in aerospace, medical, and automotive industries.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"34 6","pages":"2326 - 2351"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-025-02004-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
To optimize the heat treatment temperature for enhancing the microstructure and performance of Sm2O3/FeCoNiCrMn high-entropy alloy (HEA) composite coatings fabricated by laser cladding, the microstructural evolution and mechanical properties of coatings heat-treated at 500 °C, 700 °C, and 900 °C were investigated. XRD, SEM, and EDS analyses revealed that the phase composition remained primarily face-centered cubic (FCC), with secondary phases Co5.24Sm0.97 and Fe7Sm, regardless of temperature. Increasing the treatment temperature from 500 to 900 °C elevated surface residual stress from 412.35 to 461.89 MPa and intensified internal elemental segregation. At 500 °C, the coatings exhibited optimal performance, achieving the highest average hardness (317 HV0.4), lowest wear rate (0.11 mm3/N·m), smallest wear depth (134.27 μm), and minimal elemental segregation, surpassing untreated samples in hardness, wear resistance, and corrosion resistance. These findings highlight the critical influence of heat treatment temperature on HEA composite coatings, with 500 °C identified as the optimal temperature for enhancing mechanical and corrosion properties. This study provides valuable insights for applying laser cladding and heat treatment technologies in aerospace, medical, and automotive industries.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.