Di Wu, Yanlin Ge, Lingen Chen, Shuangshuang Shi, Huijun Feng
{"title":"Performance analysis and multi-objective optimization of irreversible Diesel cycle with non-ideal gas working fluid","authors":"Di Wu, Yanlin Ge, Lingen Chen, Shuangshuang Shi, Huijun Feng","doi":"10.1007/s10973-024-13511-y","DOIUrl":"https://doi.org/10.1007/s10973-024-13511-y","url":null,"abstract":"<p>In the early research process, the ideal gas was taken as the research object, but in practice, the working fluid was all non-ideal gas, so it is of great significance to study performance of actual internal combustion engine with non-ideal gas. This study utilizes an irreversible Diesel cycle model, which has been established in the previous literature, and considers various irreversible loss terms and specific heat model of non-ideal gas working fluid, to perform cycle performance analysis and multi-objective optimization. Compression ratio (<span>(gamma)</span>) is taken as optimization variable to optimize efficiency (<span>(eta)</span>), dimensionless power (<span>(overline{P})</span>), dimensionless power density (<span>(overline{{P_{{text{d}}} }})</span>) and dimensionless ecological function (<span>(overline{E})</span>). The results show that there are optimal <span>(gamma)</span> s to maximize the four-objective functions (<span>(eta_{max })</span>, <span>(overline{P}_{max })</span>, <span>(overline{{P_{{text{d}}} }}_{max })</span> and <span>(overline{E}_{max })</span>); with the rises of irreversible loss terms, the <span>(eta_{max })</span>, <span>(overline{P}_{max })</span>, <span>(overline{{P_{{text{d}}} }}_{max })</span> and <span>(overline{E}_{max })</span> all drop. As freedom degree of monatomic gas changes from 1 to 3, only <span>(eta_{max })</span> drops and the other three-objective functions rise. When <span>(overline{P} - eta - overline{E} - overline{P}_{{text{d}}})</span> is optimized and <span>(gamma_{{{text{opt}}}})</span> is mainly concentrated between 3.6 and 5.3, the calculation results of <span>(overline{P}_{{}})</span> are distributed between 0.85 and 1. The calculation results of <span>(eta)</span> are distributed between 0.46 and 0.52. The calculation results of <span>(overline{E})</span> are distributed between 0.6 and 1. The calculation results of <span>(overline{{P_{{text{d}}} }})</span> are distributed between 0.9 and 1. When <span>(overline{P} - eta - overline{E} - overline{P}_{{text{d}}})</span> and <span>(overline{P} - overline{E} - overline{P}_{{text{d}}})</span> are optimized, deviation indexes obtained by using LINMAP decision-making are the smallest and the best among all optimization results. Multi-objective optimization algorithm is an optimization method to solve multiple conflicting objectives by simulating the competition mechanism in nature. It can find a balance point among multiple objective extremes and thus improve comprehensive performance of Diesel cycle.</p>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reza Nasiri, Mohammad Reza Saffarian, Mojtaba Moravej
{"title":"Experimental investigation of a hemispherical solar collector performance with helical risers by using Ag–CuO/water hybrid nanofluid","authors":"Reza Nasiri, Mohammad Reza Saffarian, Mojtaba Moravej","doi":"10.1007/s10973-024-13595-6","DOIUrl":"https://doi.org/10.1007/s10973-024-13595-6","url":null,"abstract":"<p>A stationary, symmetrical hemispherical solar collector with helical risers is experimentally investigated. Pure water and Ag-CuO/water hybrid nanofluid are used as the working fluid. The nanoparticle's volume fractions are 0.1 and 0.3%, and the flow rates of the working fluid are 1, 1.5, and 2 Lmin<sup>−1</sup>. A total of 9 tests have been conducted in 9 consecutive days during August 2022. All tests were performed according to ASHRAE standards. The main novelty of this study is the practical use of hybrid nanofluid and helical risers in a solar collector with hemispherical geometry. According to the results, a hemispherical solar collector exhibits hopeful and favorable thermal efficiency due to its particular shape and the unique arrangement of its helical risers. The results show that with the increase in flow rate, the temperature difference between the inlet and outlet of the hemispherical solar collector and the heat exchanger inside storage tank decreases, while the thermal performance of the solar collector increases. Also, when the concentration of nanoparticles increases, the temperature difference between the inlet and outlet of the collector, and the thermal efficiency, increases. The results show that the maximum thermal efficiency of the solar collector is 86.8% and the maximum average temperature of the fluid around the heat exchanger in the storage tank is 79.8 °C, and these results are related to the hybrid nanofluid with a volume fraction of 0.3% and a flow rate of 2 Lmin<sup>−1</sup>.</p>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mining fan end cooling heat exchanger circuit optimization analysis using micro-unit method","authors":"Yongliang Zhang, Zhen Hu, Hongwei Mu, Xilong Zhang, Shouqing Lu, Qinglei Tan, Bing Shao","doi":"10.1007/s10973-024-13452-6","DOIUrl":"https://doi.org/10.1007/s10973-024-13452-6","url":null,"abstract":"<p>To address the issue of low efficiency in cooling heat exchangers at the deeper ends of mine fans, we propose a micro-unit approach for arranging the cooling water flow path within the heat exchanger. This method involves subdividing the heat exchanger into micro heat transfer units and determining the heat transfer characteristics of each individual unit through theoretical calculations and software simulations. Utilizing a computer program, these micro units are systematically arranged and combined to exhaust all possible cooling water flow paths. The ultimate objective is to derive the optimal structural arrangement of the cooling water flow path within the heat exchanger, with the goal of achieving the most efficient heat transfer effect. The findings reveal that the optimized structure, obtained through the micro-unit optimization method, achieves an average air outlet temperature of 311.65 K. This temperature is lower than that of the typical current-flow structure (311.88 K) and the typical counter-flow structure (311.68 K), indicating a superior heat transfer effect. Further examination demonstrates that the average air outlet temperature across all counter-flow structures is 311.68 K, which is notably lower than the average air outlet temperature of 311.90 K observed in the current-flow structure. This highlights the enhanced heat transfer effectiveness of the counter-flow structure. This novel method for optimizing the heat exchanger flow path applies the concept of finite element analysis to the optimization process, reducing computational and experimental costs. This approach is significant for improving the efficiency of heat exchangers.</p>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermoelectric coupling model construction of 21,700 cylindrical ternary lithium batteries under wide temperature range environment","authors":"Haopeng Chen, Tianshi Zhang, Haibo Chen, Qing Gao","doi":"10.1007/s10973-024-13560-3","DOIUrl":"https://doi.org/10.1007/s10973-024-13560-3","url":null,"abstract":"<p>The electrochemical properties, heat production properties and safety of lithium-ion batteries are significantly affected by the ambient temperature. In this paper, a combination of experimental and simulation methods is used to reveal the differences of the battery thermoelectric coupling characteristics under wide temperature range environment (from − 20 ℃ to 40 ℃) by taking 21,700 cylindrical ternary lithium batteries as examples. We design the battery model characterization method, carry out the battery charging and discharging characteristics experiments under different ambient temperatures, extract the respective modeling key parameters, reveal the differences of parameters under different temperatures, and construct the battery thermoelectric coupling model under wide temperature range environment. Simultaneously, we utilize the model constructed above to conduct simulations and experimentally verify battery thermal performance. By comparing experimental data acquired through infrared thermography and K-type thermocouples with simulation outcomes, we find the error to be below 5%. Unlike the homogeneous heat source model, the model constructed in this paper can simulate the uneven temperature field. In comparison to both equivalent circuit models and electrochemical-thermal coupling models, it involves fewer computations. It considers both the precision of simulating battery thermal performance and practicality for market-oriented popularity, which lays the foundation for research and market-oriented popularity related to battery thermal management design under wide temperature range environment.</p>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mostafa M. Salama, Sherif A. Mohamed, Mohamed Attalla, Ahmed N. Shmroukh
{"title":"A review on metal halide–ammonia thermochemical seasonal sorption energy storage systems","authors":"Mostafa M. Salama, Sherif A. Mohamed, Mohamed Attalla, Ahmed N. Shmroukh","doi":"10.1007/s10973-024-13588-5","DOIUrl":"https://doi.org/10.1007/s10973-024-13588-5","url":null,"abstract":"<p>Energy storage has been proposed as a promising solution to reduce the mismatch between the energy supply and demand. Research on thermochemical sorption energy storage (TSES) has demonstrated considerable interest in thermal energy storage system and heat transforming processes used in applications of solar energy storage, space heating, industrial heat recovery, and heat upgrade during the past 20 years. TSES is the only promising method to store energy for long-term/seasonal periods without any energy losses. However, TSES system is more complex and thus has not yet been developed commercially. So, more efforts are required to bring this technology to the market. TSES is the most recent thermal energy storage technology in recent decades, and it is still under investigation in laboratories. Sorption materials are the basis for developing TSES systems; however, it has the drawbacks of agglomeration and swelling; to address this issue, porous heat transfer matrixes using expanded natural graphite (ENG) have recently been proposed for improving mass and heat transfer by solidified composite adsorbents. So, the techniques of making composites of inorganic salts for TSES systems are presented in detail. Different from previous reviews, this review article focuses on various solid–gas thermochemical seasonal sorption and resorption energy storage systems based on metal halide–ammonia and consolidated composite metal halide–ammonia working pairs. This paper provided a state-of-the-art review on the progress of the latest studies and projects of theoretical and experimental chemisorption energy storage systems. Basic concepts, Clapeyron diagram, and selection criteria of storage materials of TSES systems were also presented.</p>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gökberk Yalçın, Semiha Öztuna, Ahmet Selim Dalkılıç, Somchai Wongwises
{"title":"Effect of particle size on SiO2 nanofluid viscosity determined by a two-step method","authors":"Gökberk Yalçın, Semiha Öztuna, Ahmet Selim Dalkılıç, Somchai Wongwises","doi":"10.1007/s10973-024-13403-1","DOIUrl":"https://doi.org/10.1007/s10973-024-13403-1","url":null,"abstract":"<p>According to review of the literature, the influence of nanoparticle diameter with irregular shapes on viscosity requires further research since there is no relation between particle size and nanofluid stability. In this study, SiO<sub>2</sub>/EG–water-based nanofluid samples were prepared, and their viscosities were experimentally determined. SiO<sub>2</sub> nanoparticles had sizes of 7, 15, and 40 nm, and the base fluid was a 50% ethylene glycol and 50% water mixture. Nanofluid samples were prepared using a two-step technique. Viscosity change was measured every 10 °C from 20 to 60 °C. The maximum viscosity values were observed for 7, 15, and 40 nm particles over an entire concentration range. Considering all measurements, the highest viscosity increase was 60.51% for 3% SiO<sub>2</sub> (7 nm) at 60 °C, and the lowest viscosity change was 7.72% for 1% SiO<sub>2</sub> (40 nm) at 40 °C. The most stable sample of the current study was 1% SiO<sub>2</sub> (15 nm), and its Zeta potential was − 35.6 mV. Finally, a new empirical equation that included temperature, particle diameter, and concentration terms is suggested to predict dynamic viscosity, with <i>R</i><span>\u0000<sup>2</sup><sub>adj</sub>\u0000</span> = 0.98. It was also compared with previous correlations.</p>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of CSH-PCE nanocomposites on early hydration of the ternary binder containing Portland cement, limestone, and calcined coal gangue","authors":"Ying Liu, Qinghui Yang, Yuantao Wang, Shufeng Liu, Yuanyuan Huang, Delu Zou, Xueyan Fan, Haoran Zhai, Yongling Ding","doi":"10.1007/s10973-024-13501-0","DOIUrl":"https://doi.org/10.1007/s10973-024-13501-0","url":null,"abstract":"<p>In this work, the impact of lab synthetic addition agent, CSH-PCE nanocomposites (CPNs), on the early hydration property of the ternary binder containing Portland cement, limestone, and calcined coal gangue was investigated. CPNs were added in partial substitution of Portland cement by mass at 0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3.0%. X-ray diffraction (XRD), isothermal calorimetry, mercury intrusion porosimetry, and scanning electron microscopy were used to characterize the hydration and hydrates of the CPNs-modified pastes systematically. The workability and compressive strength of this ternary system was also studied. The obtained results indicated that the use of CPNs continuously improved the workability of the ternary mortar. The compressive strength of the ternary mortar increased with CPNs additions until the threshold limits of 3.0% and 2.5% before and after 12 h, under which the strength values were even higher than the reference OPC mortar at each age. Isothermal calorimetry results indicated that CPNs promoted cement hydration and produced more hydrates, which were also verified by the qualitative XRD analysis. This promotion effect leads to significant reduction in porosity as well as densification in microstructure within the ternary paste, ultimately resulting in enhanced early-age compressive strength. These findings provide valuable insights for designing lower carbon footprint ternary blends incorporating calcined coal gangue and limestone while maintaining comparable early-age compressive strength to traditional cement.</p>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An exergy and entropy generation investigation in microchannel heat sink utilizing alumina nanofluid at varied concentrations with conjugate heat transfer","authors":"Sandeep Gupta, P. M. V. Subbarao","doi":"10.1007/s10973-024-13536-3","DOIUrl":"https://doi.org/10.1007/s10973-024-13536-3","url":null,"abstract":"<p>This research presents an experimental assessment of exergy and entropy generation in a straight circular multi-microchannel stainless steel heatsink. Deionized water and water/alumina nanofluids with 1–4% (m/m) concentrations are used as cooling fluids in the heat sink, operating at low Reynolds numbers (10 ≤ Re ≤ 50). The primary goals of the exergy analysis are to evaluate the first and second laws of thermodynamics, including exergy output, gain, and loss. Entropy generation analysis encompasses both heat transfer and flow entropy. The study’s main innovation is the examination of exergy and entropy generation in microchannel heat sinks using nanofluids at low Reynolds numbers. The results show that nanofluids with a 4% nanoparticle concentration achieve a higher exergy gain of 56% compared to DI water at Re = 40. Exergy loss increases with Reynolds numbers and with increase in the nanoparticles concentration up to 4%, the exergy loss increases up to 27% at Re = 10. Back conduction, significant at low Reynolds numbers, does not affect the second law efficiency. The highest second law efficiency occurs at Re = 10, with DI water achieving 7.2% under high heat flux, while nanofluids with 4% nanoparticle concentration show 5.9%. This efficiency decreases with Reynolds number and nanoparticle concentrations. However, introducing alumina nanoparticles into DI water reduces entropy generation; at Re = 50, the total entropy generation is 0.0013 W K<sup>−1</sup> for DI water and 0.001 W K<sup>−1</sup> for nanofluids with a 4% nanoparticle concentration. Nanofluids reduce entropy generation up to 27% at a 4% concentration of nanoparticles compared to DI water at Re = 40. These findings offer valuable insights for optimizing the design and performance of microchannel heat sink configurations for various thermal management applications, focusing on exergy and entropy generation.</p>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bo Tan, Feiran Wang, Jiliang Huang, Chang Su, Liyang Gao, Xiyang Fang, Haiyan Wang, Tianze Li
{"title":"A study on the combustion characteristics and kinetic parameters of coal during the inertization process at different metamorphic degrees","authors":"Bo Tan, Feiran Wang, Jiliang Huang, Chang Su, Liyang Gao, Xiyang Fang, Haiyan Wang, Tianze Li","doi":"10.1007/s10973-024-13581-y","DOIUrl":"https://doi.org/10.1007/s10973-024-13581-y","url":null,"abstract":"<p>To examine the impact of different heating rates and oxygen concentrations on the combustion characteristics and kinetic parameters of coals at various metamorphic degrees, this study selected four different metamorphic degrees as experimental subjects. Thermogravimetric experiments were conducted under various heating rates and oxygen concentrations to obtain characteristic temperature points, mass loss rates, and heat absorption and excretion characteristics of coal samples under different conditions. Furthermore, reaction mechanism functions were determined, and the reaction kinetics \"three factors\" of coal samples under different conditions were calculated to ascertain activation energy. Based on characteristic temperature points, different phases of coal spontaneous combustion were delineated, and the oxidative characteristics of coal samples at each phase were analyzed. The study explored the impact mechanisms of different temperatures and oxygen concentrations on coal spontaneous combustion from the perspectives of characteristic temperature points and activation energy. The results indicate that inertization, meaning the introduction of inert gases, has an inhibitory effect on the coal–oxygen complex process for coals at different metamorphic degrees. As the degree of inertization increases, the two phases most affected are the oxygen uptake and mass gain phase and the combustion phase. Compared to the oxygen uptake and mass gain phase, the TG curve of the combustion phase shows a delayed phenomenon with increased inertization degree. With rising temperature, the overall trend of the DTG curve initially decreases, followed by an increase, and then reaches a steady plateau, with the minimum value occurring at the trough. The maximum mass loss rate of coals at different metamorphic degrees decreases with an increase in inertization degree, indicating that inertization inhibits the coal oxidation process. Additionally, the temperature points corresponding to the maximum exothermic rate all shift backward. The DSC curves of coal samples exhibit an overall trend of initial decrease followed by an increase with temperature variation. With enhanced inertization degree, the maximum exothermic rate of coals at different metamorphic degrees decreases, and the corresponding temperature points shift backward. As the inertization intensity decreases, the activation energy (<i>E</i><sub>a</sub>) of the low-temperature oxidation phase generally decreases for coals at four different metamorphic degrees. Under the same inertization intensity, coals with higher metamorphic degrees have higher activation energy. This study can provide theoretical support for the prevention and control of coal spontaneous combustion.</p>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. M. Bolarín-Miró, C. A. Taboada-Moreno, C. A. Cortés-Escobedo, F. Sánchez-De Jesús
{"title":"Tuning the magnetocaloric properties of lanthanum–strontium manganite by rare-earth Nd3+ doping","authors":"A. M. Bolarín-Miró, C. A. Taboada-Moreno, C. A. Cortés-Escobedo, F. Sánchez-De Jesús","doi":"10.1007/s10973-024-13565-y","DOIUrl":"https://doi.org/10.1007/s10973-024-13565-y","url":null,"abstract":"<p>This study investigated the effect of neodymium (Nd) on the crystal structure and magnetocaloric properties of lanthanum–strontium manganites (La<sub>0.7−x</sub>Nd<sub>x</sub>Sr<sub>0.3</sub>MnO<sub>3,</sub> 0 ≤ <i>x</i> ≤ 0.4), synthesized by assisted high-energy ball milling. Rietveld analysis from X-ray diffraction disclosed that Nd<sup>3+</sup> did not promote crystallographic phase transitions. The rhombohedral crystal structure remained in the <i>R</i>-3<i>c</i> space group for all the compositions, with slight changes in lattice parameters. The defect model allowed the quantification of the Mn<sup>4+</sup> occupancy, which is in the range from 0.20 to 0.26 mol, for 0.1 and 0.4 mol of Nd<sup>3+</sup>, respectively. The presence of Mn<sup>4+</sup> promoted further ferromagnetic interactions, increasing systematically the saturation magnetization, from 65 A·m<sup>2</sup>·kg<sup>−1</sup> to 73 A·m<sup>2</sup>·kg<sup>−1</sup>, and a diminution in the Curie temperature from 364 to 255 K, for 0 and 0.4 mol of Nd<sup>3+</sup>, respectively, obtained by temperature-dependent magnetization measurements. The doped manganite with 0.35 mol of Nd<sup>3+</sup> showed a maximum of entropy change of 3.73 Jkg<sup>−1</sup> K<sup>−1</sup> at 1.8 T near room temperature, with a relative cooling power of 82 Jkg<sup>−1</sup> and temperature-averaged entropy change, TEC(3) and TEC(10), of 3.53 and 3.06 Jkg<sup>−1</sup> K<sup>−1</sup>, respectively. It is demonstrated that the presence of Nd<sup>3+</sup> modulates the Curie temperature near room temperature and enhances the magnetocaloric properties at low magnetic fields, making these manganites a promising material for magnetocaloric applications.</p>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}