Optimization of heat transfer in bi-directional flow of sodium alginate-based ternary hybrid nanofluid over an extending heated surface with velocity slip conditions
Showkat Ahmad Lone, Laila A. AL-Essa, Fuad S. Alduais, Afrah Al-Bossly, Abdullah Dawar, Anwar Saeed
{"title":"Optimization of heat transfer in bi-directional flow of sodium alginate-based ternary hybrid nanofluid over an extending heated surface with velocity slip conditions","authors":"Showkat Ahmad Lone, Laila A. AL-Essa, Fuad S. Alduais, Afrah Al-Bossly, Abdullah Dawar, Anwar Saeed","doi":"10.1007/s10973-024-13872-4","DOIUrl":null,"url":null,"abstract":"<div><p>The analysis of three-dimensional trihybrid nanofluid flow on a stretchable sheet using variable porous medium and diverse nanoparticles (Cu, CuO, Al<sub>2</sub>O<sub>3</sub>) in a sodium alginate base fluid has many applications in augmenting thermal transfer processes across numerous engineering systems like optimization of thermal management in electronic components, industrial heat exchangers and energy conversion systems. The inclusion of velocity slips and convective heat transfer has many applications in advanced thermal systems in aerospace, renewable energy and automotive sectors efficient heat dissipation in critical. Therefore, in this article, three-dimensional flows of a ternary hybrid nanofluid flow on a stretchable sheet using variable permeable medium. The velocity slip conditions along with convective thermal transportation are also considered in this article along with thermal radiation and heat source. The present analysis is endorsed with the earlier published results by which the validation of present model and applied technique are confirmed. The results of the current investigation demonstrate that a higher magnetic factor boosted the thermal distribution, while reducing the primary and secondary velocity distributions. A higher Casson factor improved both the primary and secondary velocities. Higher velocity slip factors lowered the primary and secondary velocities. The increased thermal Biot number, thermal radiation parameter improved thermal dispersion. The greater the thermal Biot number, radiative and heat source factors, the higher the thermal transfer rate.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"150 3","pages":"1545 - 1556"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13872-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The analysis of three-dimensional trihybrid nanofluid flow on a stretchable sheet using variable porous medium and diverse nanoparticles (Cu, CuO, Al2O3) in a sodium alginate base fluid has many applications in augmenting thermal transfer processes across numerous engineering systems like optimization of thermal management in electronic components, industrial heat exchangers and energy conversion systems. The inclusion of velocity slips and convective heat transfer has many applications in advanced thermal systems in aerospace, renewable energy and automotive sectors efficient heat dissipation in critical. Therefore, in this article, three-dimensional flows of a ternary hybrid nanofluid flow on a stretchable sheet using variable permeable medium. The velocity slip conditions along with convective thermal transportation are also considered in this article along with thermal radiation and heat source. The present analysis is endorsed with the earlier published results by which the validation of present model and applied technique are confirmed. The results of the current investigation demonstrate that a higher magnetic factor boosted the thermal distribution, while reducing the primary and secondary velocity distributions. A higher Casson factor improved both the primary and secondary velocities. Higher velocity slip factors lowered the primary and secondary velocities. The increased thermal Biot number, thermal radiation parameter improved thermal dispersion. The greater the thermal Biot number, radiative and heat source factors, the higher the thermal transfer rate.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.