Sheida Khosravi Shahmirzadi, Saman Rashidi, Roohollah Rafee
{"title":"Effects of mist spray cooling on freshwater production and thermal efficiency of stepped solar desalination system","authors":"Sheida Khosravi Shahmirzadi, Saman Rashidi, Roohollah Rafee","doi":"10.1007/s10973-024-13720-5","DOIUrl":"10.1007/s10973-024-13720-5","url":null,"abstract":"<div><p>This research discusses the experimental investigation of utilizing fans on a stepped solar still (SSS) to increase the condensation rate and improve efficiency. A stepped solar still has 12 galvanized steps, with a total evaporation area of 0.275 square meters tested under the weather conditions of Semnan City, located in Semnan province, Iran, at a latitude of 35°. The test was carried out using two fans with saline water spray capability, and it was examined in three modes: without fans, with fans, and using fans and spray. Four different inlet flow rates were considered over 12 days of testing. The parameters examined in this test included ambient temperature, glass cover temperature, inlet saline water temperature, outlet brine temperature, the amount of freshwater produced, wind speed, humidity, and solar intensity. The desired data were recorded and analyzed every day for 9 h, from 9 am to 5 pm, and the device’s efficiency was investigated. According to the findings, the best performance in terms of daily water production was achieved with the fan and spray mode at a flow rate of 90 mL min<sup>−1</sup>, which resulted in 1.41 L of fresh water per day. The device demonstrated its highest daily efficiency of 49.4% when using the fans and spray at 30 mL min<sup>−1</sup>. Moreover, the highest exergy efficiency of 77.4% was obtained with the fans and spray at 30 mL min<sup>−1</sup>. The modified stepped solar still boosts annual productivity by 24.44% at the expense of a 58.41% increase in CPL, presenting economic challenges needing further research.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 24","pages":"14991 - 15005"},"PeriodicalIF":3.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on preparation and heat storage performance of paraffin-expanded vermiculite-based phase change concrete","authors":"Min Li, Yafei Guan","doi":"10.1007/s10973-024-13832-y","DOIUrl":"10.1007/s10973-024-13832-y","url":null,"abstract":"<div><p>Paraffin-expanded vermiculite (EV) composite PCMs are prepared by using vacuum adsorption method. Paraffin-EV with an adsorption rate of 52 mass% paraffin is selected as phase change aggregate to replace sand in concrete. The chemical structure is characterized by Fourier transform infrared spectrometer (FTIR). The thermal storage performance and thermal reliability of phase change aggregate are characterized by differential scanning calorimeter (DSC) and temperature–time curve. The results show that adsorbing paraffin wax by expanded vermiculite is a physical process. The phase change temperature is 26.1 °C, and the melting enthalpy of the phase change aggregate is 63.7 J g<sup>−1</sup>. The mass loss rate of phase change aggregate is 3.26% after 200 cooling/heating cycles. The peak temperature of cement hydration for phase change aggregate is 26.6 °C, which is 4.1 °C lower than that of concrete without phase change aggregate. The prepared phase change concrete shows good heat storage/release performance.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 24","pages":"14605 - 14614"},"PeriodicalIF":3.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improvement of vibration resistance of slag blended cement mortar using C-S-H seeds","authors":"Wenjie Li, Jiangfeng Long, Sijia Liu, Peng Wang, Linglin Xu, Yong Lai","doi":"10.1007/s10973-024-13807-z","DOIUrl":"10.1007/s10973-024-13807-z","url":null,"abstract":"<div><p>To assess the feasibility of using C-S–H seeds to boost the anti-mechanical vibration capabilities of concrete, this work evaluated the mechanical properties, hydration kinetics, phase assemblage of hydrates, and pore structure of Portland cement (PC) and slag cement mortars, at varying dosages of C-S–H seeds. Results reveal that the incorporation of C-S–H seeds negatively affects the vibration resistance of neat PC, while it effectively enhances the vibration resistance of slag cement. The addition of these seeds facilitates cement hydration and improves the early mechanical properties, which is evident in the shortened appearance time of the hydration exothermic peak by almost 50%. The remarkable vibration resistance observed in slag cement primarily stems from the synergistic effect between C-S–H seeds and slag. However, the premature formation of the internal microstructure in neat PC due to C-S–H seeds disrupts the stability of mutual construction between hydration products. The findings indicate that C-S–H seeds can be used in engineering to enhance concrete lifespan, reduce road repair expenses, and enhance construction efficiency.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 23","pages":"13759 - 13771"},"PeriodicalIF":3.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wangqing Wu, Changyuan Jia, Bingyan Jiang, Yang Zou
{"title":"Modeling heat generation in polymer–polymer interfaces under ultrasonic vibration: a coupled friction and viscoelastic approach","authors":"Wangqing Wu, Changyuan Jia, Bingyan Jiang, Yang Zou","doi":"10.1007/s10973-024-13803-3","DOIUrl":"10.1007/s10973-024-13803-3","url":null,"abstract":"<div><p>To quantify the interfacial friction and volumetric viscous heating contribution of polymers during ultrasonic plasticization is of great significance for optimizing plasticization process parameters. This paper presents a coupled numerical analysis model considering multiple heat sources in a simplified ultrasonic plasticizing system. The contribution of contact position angles and ultrasonic process parameters to interfacial friction and volumetric viscous heating of polymers was considered, and the accuracy of the model was verified by infrared experiment and simulation. The following conclusions were summarized: the interface temperature increases first and then decreases during the experiment, and the heat generation mainly occurs in the first second of plasticization. The effects of process parameters on polymer heating, dynamic parameters, and energy were studied by simulation. It was found that the contact position angle and ultrasonic process parameters controlled the heat generation process by influencing the friction force and slip velocity between pellets. Under standard processing conditions, when the contact position angle ranges from 0°to 90°, both the heat production rate and total heat initially increase before subsequently decreasing, reaching a maximum at approximately 40°. At this optimal angle, the friction force is around 27.5 N, the slip rate is about 2250 mm s<sup>−1</sup>, and the heat production rate measures 11 K ms<sup>−1</sup>. The results indicate that when the amplitude is set at 40 μm, the frequency at 30 kHz, and the contact angle at 40°, the ultrasonic plasticizing effect is optimized. This configuration ensures a higher rate of heat generation while minimizing material degradation. The interfacial friction heat is significantly higher than the volumetric viscous heat under each condition. The interfacial friction heat is usually 3–5 times higher than the volumetric viscous heat. This study provides a basis for the high-quality molding of polymer ultrasonic plasticization.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 23","pages":"13865 - 13878"},"PeriodicalIF":3.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessment of low-temperature combustion mode engine powered by titanium dioxide nano-additives in waste cooking oil with varied exhaust gas recirculation rates","authors":"Dhinesh Balasubramanian, Amudhan Rajarajan, Inbanaathan Papla Venugopal","doi":"10.1007/s10973-024-13783-4","DOIUrl":"10.1007/s10973-024-13783-4","url":null,"abstract":"<div><p>Fossil fuel depletion and its emissions lead to finding an alternative source to fulfill the world’s energy needs. Alternative fuels in particular biodiesel are the fusible alternative due to their availability and cost. The main drawback of biodiesel is its higher viscosity which can be effectively reduced by the transesterification process. The key objective of this research is to find biodiesel with higher performance, stable combustion, and lower emission characteristics. By keeping the above aim in consideration, this investigation has three phases as mentioned below. The first phase deals with finding the best waste cooking oil (WCO) blend in proportions tested. The second phase is used to find the best dosage level of titanium dioxide nanoparticle inclusion in biodiesel to improve combustion characteristics. For the intention to reduce oxides of nitrogen emission, the third phase comprises using exhaust gas recirculation (EGR) in nominal percentages. As a result, W20 (20% waste cooking oil and 80% diesel in volume) has a comparative brake thermal efficiency (BTE) of 26.9% with diesel and other blends in the first phase. In the second phase, the BTE is further increased by a maximum extent of 32.34% by the addition of 150 ppm of titanium dioxide nanoparticle, but it had the drawback of higher emission of (oxides of nitrogen) NO<sub>x</sub> around 13.44 g kWh<sup>–1</sup>. The third phase is aimed to minimize the emission of NOx by the inclusion of EGR which pulls down NOx by about a maximum of 25.3% for the W20 with 150 ppm of TiO<sub>2</sub> with 15% of EGR (W20T150EGR15%) blend, but it dips down the performance characteristics slightly. Overall, it can be concluded that W20 with 150 ppm of TiO<sub>2</sub> with 5% of EGR (W20T150EGR5%) has comparatively better performance and combustion with reduced NOx emissions.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 24","pages":"15277 - 15290"},"PeriodicalIF":3.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gaurav Sharma, Ashok Kumar Dewangan, Ashok Kumar Yadav, Aqueel Ahmad
{"title":"Feasibility of waste-to-hydrogen generation system based on gasification/pyrolysis: a comprehensive review of experimental studies","authors":"Gaurav Sharma, Ashok Kumar Dewangan, Ashok Kumar Yadav, Aqueel Ahmad","doi":"10.1007/s10973-024-13776-3","DOIUrl":"10.1007/s10973-024-13776-3","url":null,"abstract":"<div><p>The reliance on fossil fuels has propelled technological growth but has led to pressing global challenges, including waste accumulation, resource depletion, and environmental degradation due to greenhouse gas emissions. With annual production of 464 million metric tons of biomass and 321.5 billion metric tons of plastic waste, innovative waste management strategies are essential. This study explores the co-pyrolysis of biomass and plastic waste as a promising approach to convert these materials into biofuels, particularly hydrogen. The paper emphasizes hydrogen’s role as an energy carrier and feedstock, assessing eleven pathways for hydrogen generation while analyzing their environmental impacts, energy efficiency, and risks to ecological and human health. Although acid gas production ranks as the least impactful method, biomass gasification exhibits a larger ecological footprint. Additionally, the review highlights hydrogen generation via gasification and pyrolysis, emphasizing the importance of operational conditions, including temperature management and gas-cleaning systems. While gasification, operating at higher temperatures (800–1200 °C), produces more hydrogen, pyrolysis offers greater feedstock versatility and simpler residue management. The findings underscore the potential of waste-to-hydrogen technologies in advancing sustainability and reducing waste, advocating for effective hydrogen storage and transportation solutions.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 23","pages":"13629 - 13651"},"PeriodicalIF":3.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sintering studies on Ni–Ti–Fe elemental powder mixtures using differential scanning calorimetry","authors":"Tea Bertilsson, Srinivasan Iyengar, Hossein Sina","doi":"10.1007/s10973-024-13770-9","DOIUrl":"10.1007/s10973-024-13770-9","url":null,"abstract":"<div><p>Shape memory alloys based on the Ni–Ti system derive their versatile properties from the non-stoichiometric intermetallic compound NiTi. The transformation temperature associated with its shape memory effect is dependent on composition, which can be controlled by minor additions of a third element like iron. This work considers the formation of various intermetallic compounds and the evolution of phases during the sintering of ternary Ni–Ti–Fe powder compacts. Elemental powder mixtures of nickel, titanium and iron were prepared by adding 0–20 at.% Fe to equiatomic Ni–Ti. The powders were compacted into discs and sintered by heating to 1200 °C in a differential scanning calorimeter. In separate experiments, heating was interrupted to identify the phases present in the partially sintered samples at various temperatures. The microstructures of the sintered samples were characterized using scanning electron microscopy. The distribution of nickel, titanium and iron in the samples was studied with EDS mapping and the phases present were identified using XRD. In the equiatomic Ni–Ti powder compact, NiTi<sub>2</sub>, NiTi and Ni<sub>3</sub>Ti were formed in the solid state (< 942 °C) through diffusion. At 942 °C a strong reaction between the remaining titanium and NiTi<sub>2</sub> takes place, leading to the formation of a liquid. At 1120 °C, NiTi and Ni<sub>3</sub>Ti combine to form a liquid. These reactions are affected by the addition of iron to the powder mixture. The results show that at 20 at.% iron in the ternary compact, the first reaction occurred at 999 °C, instead of 942 °C for the binary composition and iron did not form any compound with nickel or titanium. Instead, the iron could replace nickel in NiTi<sub>2</sub> and in NiTi, forming (Fe, Ni)Ti<sub>2</sub> and (Fe,Ni)Ti. This leads to more Ni<sub>3</sub>Ti formation and explains why the reaction at 1120 °C is more prominent at high iron contents. A linear dependence on the iron content in the sample was also observed for the onset temperatures for two split exothermic peaks in the DSC curves. The results also suggest that the temperatures associated with the β-Ti + (Fe, Ni)Ti<sub>2</sub> → L and (Fe, Ni)Ti<sub>2</sub> → (Fe,Ni)Ti + L reactions depend on the ratio of iron to nickel in (Fe, Ni)Ti<sub>2</sub>.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 23","pages":"13745 - 13758"},"PeriodicalIF":3.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research progress on efficient battery thermal management system (BTMs) for electric vehicles using composite phase change materials with liquid cooling and nanoadditives","authors":"Madhu Jhariya, Ashok Kumar Dewangan, Syed Quadir Moinuddin, Sunil Kumar, Aqueel Ahmad, Ashok Kumar Yadav","doi":"10.1007/s10973-024-13752-x","DOIUrl":"10.1007/s10973-024-13752-x","url":null,"abstract":"<div><p>The increasing demand for electric vehicles (EVs) has brought new challenges in managing battery thermal conditions, particularly under high-power operations. This paper provides a comprehensive review of battery thermal management systems (BTMSs) for lithium-ion batteries, focusing on conventional and advanced cooling strategies. The primary objective of this study is to assess and compare the effectiveness of various cooling approaches, including air-based, liquid-based, phase change material (PCM)-based, and hybrid systems. This review paper reveals that while traditional air- and liquid-based systems offer certain benefits such as simplicity and cooling efficiency, they are constrained by limitations in thermal conductivity and energy consumption. In contrast, PCM-based systems, despite their poor thermal conductivity, provide stable temperature regulation without requiring additional energy input. To overcome these limitations, the integration of thermal conductivity enhancers (TCEs) like carbon fibers, expanded graphite, and metal foams into PCMs significantly improves their performance. For instance, composite PCM (CPCM) enhanced with expanded graphite shows a marked improvement in thermal conductivity, increasing from 0.2 Wm<sup>−1</sup> K<sup>−1</sup> to 16.6 Wm<sup>−1</sup> K<sup>−1</sup>, resulting in battery temperature reductions by up to 28%. Additionally, hybrid systems that combine active cooling with CPCMs, particularly when using nanoenhanced PCM with additives like graphene and metallic nanoparticles, demonstrate superior cooling efficiency, with temperature reductions of up to 50% compared to traditional systems. The uniqueness of this paper lies in its detailed comparison of the various BTMS strategies, including a thorough evaluation of hybrid systems that merge passive and active cooling techniques. We also explore the potential of nanoenhanced PCMs and hybrid CPCM systems, which offer significant advantages for high-power battery applications by providing both efficient heat dissipation and improved battery longevity. By synthesizing recent advancements in this field, this review highlights the most promising thermal management strategies, paving the way for future innovation in BTMS design for electric vehicles.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 23","pages":"13653 - 13680"},"PeriodicalIF":3.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Innovative impinging jet methods for performance enhancement: a review","authors":"Ayushman Srivastav, Rajesh Maithani, Sachin Sharma","doi":"10.1007/s10973-024-13777-2","DOIUrl":"10.1007/s10973-024-13777-2","url":null,"abstract":"<div><p>This paper explores diverse techniques aimed at enhancing the heat transfer performance of solar air heaters, with a primary emphasis on impinging jet arrays. The discussion includes an examination of available standards governing the manufacturing, evaluation, and certification of solar air heaters. Traditional approaches, such as the use of turbulators (ribs, baffles, and dimples), improve thermo-hydraulic performance but often lead to thermal stress due to nonuniform cooling. In contrast, jet impingement heat transfer has gained attention for its ability to provide enhanced and consistent cooling even in confined spaces. The study examines key geometric and operational parameters that influence jet impingement heat transfer, such as nozzle-to-target plate spacing, jet diameters, jet arrangement, and jet angle. Among these, the nozzle-to-target spacing and jet diameters are identified as critical factors in optimizing heat transfer. The paper also highlights the superior performance of pipe jets over orifice jets, as pipe jets generate higher fluid velocity on the target plate, resulting in enhanced heat transfer and more uniform cooling. This research underscores the growing importance of jet impingement technology in improving the efficiency of SAH and opens avenues for its application in other thermal management systems, including concentrated solar power and electric vehicle cooling systems.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 23","pages":"13581 - 13627"},"PeriodicalIF":3.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of thermal, crystal and magnetic behavior of addition of Nd rare earth element effect on CuAlMn shape memory alloy","authors":"Muhammed Sait Kanca","doi":"10.1007/s10973-024-13823-z","DOIUrl":"10.1007/s10973-024-13823-z","url":null,"abstract":"<div><p>In this study, CuAlMn alloys, a popular Cu-based shape memory alloy, were chosen because they exhibit superior shape memory properties and improved ductility compared to other Cu-based SMAs. The rare earth element Nd (neodymium) was added to CuAlMn alloy at the specified atomic percentages in the composition Cu<sub>70-x</sub>Al<sub>24</sub>Mn<sub>6</sub>Nd<sub>x</sub>(x = 0,2,4,8) and their thermal behavior, crystal structure, surface morphology and magnetic properties were investigated after fabrication. As a result of the thermal analysis measurements, it was observed that for low Nd ratios, the austenite phase transformation initial temperature of the CuAlMn alloy was increased, while at high Nd ratios, a decrease in the shape memory property was detected. Martensitic phase and precipitate phase α phase were observed in the crystal structure properties of CuAlMn alloys without and with Nd doping. These results were also detected in surface morphology observations. In addition, the crystal size decreased from 135 to 105 nm with Nd doping. As a result of magnetic measurements, CuAlMn ternary shape memory alloy was found to be paramagnetic at room temperature. Magnetic susceptibility values of the alloys showing paramagnetic magnetic properties were calculated as 11.5 × 10<sup>–6</sup>, 12.5 × 10<sup>–6</sup>, 9.15 × 10<sup>–6</sup> and 6.15 × 10<sup>–6</sup> emu.Oe<sup>−1</sup>.g<sup>−1</sup>, respectively. According to these results, the magnetic susceptibility value decreased with increasing Nd ratio.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 23","pages":"13737 - 13743"},"PeriodicalIF":3.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}