Optimizing solar panel performance: a novel algorithm incorporating a duct with helical tape filled with a mixture of water and hybrid nano-powders

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Atefeh Anisi, M. Sheikholeslami, Z. Khalili, Faranack M. Boora
{"title":"Optimizing solar panel performance: a novel algorithm incorporating a duct with helical tape filled with a mixture of water and hybrid nano-powders","authors":"Atefeh Anisi,&nbsp;M. Sheikholeslami,&nbsp;Z. Khalili,&nbsp;Faranack M. Boora","doi":"10.1007/s10973-024-13813-1","DOIUrl":null,"url":null,"abstract":"<div><p>This study employs a machine learning methodology, specifically the Random Forest (RF) model, to evaluate and optimize the productivity of a photovoltaic (PV) unit integrated with a cooling duct equipped with helical fins. A thermoelectric generator (TEG) is strategically positioned above the cooling duct to enhance electricity production. The cooling mechanism utilizes confined jets involving of ND-Co<sub>3</sub>O<sub>4</sub>- water nanomaterial to improve thermal regulation. The key variables considered include the number of fins (<i>N</i><sub>f</sub>), their revolution number (<i>N</i><sub>r</sub>), inlet velocity (<i>V</i><sub>i</sub>), and heat flux intensity (<i>I</i>). The optimization focuses on three primary objectives: maximizing profit, enhancing CO<sub>2</sub> mitigation (<i>CM</i>), and minimizing pumping power (<i>W</i><sub>p</sub>). The RF model showed strong predictive capability, achieving a test RMSE of 0.4590 and an R<sup>2</sup> of 0.9474 for <i>W</i><sub>p</sub>, an RMSE of 71.8501 and an <i>R</i><sup><i>2</i></sup> of 0.8421 for Profit, and an RMSE of 2.9472 with an R<sup>2</sup> of 0.8143 for <i>CM</i>. A multi-objective optimization technique was used to derive Pareto front solutions, balancing trade-offs among these objectives. The results demonstrate that integrating helical fins and nanoparticle-infused cooling jets significantly improves system performance, with optimized solutions reducing pumping power, while enhancing both profit and CO<sub>2</sub> mitigation.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 24","pages":"14753 - 14767"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13813-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs a machine learning methodology, specifically the Random Forest (RF) model, to evaluate and optimize the productivity of a photovoltaic (PV) unit integrated with a cooling duct equipped with helical fins. A thermoelectric generator (TEG) is strategically positioned above the cooling duct to enhance electricity production. The cooling mechanism utilizes confined jets involving of ND-Co3O4- water nanomaterial to improve thermal regulation. The key variables considered include the number of fins (Nf), their revolution number (Nr), inlet velocity (Vi), and heat flux intensity (I). The optimization focuses on three primary objectives: maximizing profit, enhancing CO2 mitigation (CM), and minimizing pumping power (Wp). The RF model showed strong predictive capability, achieving a test RMSE of 0.4590 and an R2 of 0.9474 for Wp, an RMSE of 71.8501 and an R2 of 0.8421 for Profit, and an RMSE of 2.9472 with an R2 of 0.8143 for CM. A multi-objective optimization technique was used to derive Pareto front solutions, balancing trade-offs among these objectives. The results demonstrate that integrating helical fins and nanoparticle-infused cooling jets significantly improves system performance, with optimized solutions reducing pumping power, while enhancing both profit and CO2 mitigation.

优化太阳能电池板的性能:一种新的算法,将一个装有螺旋带的管道与水和混合纳米粉末的混合物结合起来
本研究采用机器学习方法,特别是随机森林(RF)模型,来评估和优化与配备螺旋鳍的冷却管道集成的光伏(PV)单元的生产率。热电发电机(TEG)被战略性地放置在冷却管道上方,以提高发电量。该冷却机制利用ND-Co3O4-水纳米材料的受限射流来改善热调节。考虑的关键变量包括翅片数(Nf)、转数(Nr)、入口速度(Vi)和热流强度(I)。优化主要关注三个主要目标:利润最大化、增强二氧化碳减排(CM)和最小化泵送功率(Wp)。RF模型具有较强的预测能力,Wp的RMSE为0.4590,R2为0.9474;Profit的RMSE为71.8501,R2为0.8421;CM的RMSE为2.9472,R2为0.8143。采用多目标优化技术推导了Pareto前解,平衡了这些目标之间的权衡。结果表明,整合螺旋鳍和注入纳米颗粒的冷却射流显著提高了系统性能,优化后的解决方案降低了泵送功率,同时提高了利润和二氧化碳减排。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信