隧道环境下乙醇溢出火灾火焰辐射特性的实验与模型研究

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Peihong Zhang, Chenghao Ye, Meiqing Xia, Jiaxing Li, Xuejing Hu
{"title":"隧道环境下乙醇溢出火灾火焰辐射特性的实验与模型研究","authors":"Peihong Zhang,&nbsp;Chenghao Ye,&nbsp;Meiqing Xia,&nbsp;Jiaxing Li,&nbsp;Xuejing Hu","doi":"10.1007/s10973-024-13764-7","DOIUrl":null,"url":null,"abstract":"<div><p>Accidental leakage of liquid fuel frequently results in spill fire accidents, with radiation playing a pivotal role in flame propagation and environmental hazard. Conducted in a scale tunnel, ethanol spill fire experiment utilized five stainless steel rectangular channels, with length of 1 m, widths ranging from 0.1 to 0.3 m, and height of 0.03 m. The study focused on aspects such as flame area, bifurcation and fusion behaviors, flame height, and the distribution of flame heat radiation. Notably, as the channel width increased, the flame area and bifurcation phenomenon decreased, leading to taller flames. Drawing comparisons with the trapezoid flame thermal radiation model, we introduced a weighted multi-point source flame thermal radiation model that takes into account flame shape. In terms of predicting thermal radiation, weighted multi-point source model demonstrates a slightly higher degree of accuracy compared to trapezoid model, providing results closer to experimental values. It not only accurately predicted near-distance radiation from the spill fire but also distant radiation, with an error margin of less than 20%. This work offers crucial insights into the spatial distribution of flame heat radiation in spill fire accidents.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 24","pages":"15105 - 15119"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and model study on flame radiation characteristics of ethanol spill fires in tunnel environment\",\"authors\":\"Peihong Zhang,&nbsp;Chenghao Ye,&nbsp;Meiqing Xia,&nbsp;Jiaxing Li,&nbsp;Xuejing Hu\",\"doi\":\"10.1007/s10973-024-13764-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accidental leakage of liquid fuel frequently results in spill fire accidents, with radiation playing a pivotal role in flame propagation and environmental hazard. Conducted in a scale tunnel, ethanol spill fire experiment utilized five stainless steel rectangular channels, with length of 1 m, widths ranging from 0.1 to 0.3 m, and height of 0.03 m. The study focused on aspects such as flame area, bifurcation and fusion behaviors, flame height, and the distribution of flame heat radiation. Notably, as the channel width increased, the flame area and bifurcation phenomenon decreased, leading to taller flames. Drawing comparisons with the trapezoid flame thermal radiation model, we introduced a weighted multi-point source flame thermal radiation model that takes into account flame shape. In terms of predicting thermal radiation, weighted multi-point source model demonstrates a slightly higher degree of accuracy compared to trapezoid model, providing results closer to experimental values. It not only accurately predicted near-distance radiation from the spill fire but also distant radiation, with an error margin of less than 20%. This work offers crucial insights into the spatial distribution of flame heat radiation in spill fire accidents.</p></div>\",\"PeriodicalId\":678,\"journal\":{\"name\":\"Journal of Thermal Analysis and Calorimetry\",\"volume\":\"149 24\",\"pages\":\"15105 - 15119\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Analysis and Calorimetry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10973-024-13764-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13764-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

液体燃料的意外泄漏经常导致泄漏火灾事故,其中辐射在火焰传播和环境危害中起着关键作用。乙醇溢出火灾实验在规模隧道中进行,采用5条不锈钢矩形通道,长1 m,宽0.1 ~ 0.3 m,高0.03 m。研究重点包括火焰面积、分岔与融合行为、火焰高度、火焰热辐射分布等方面。值得注意的是,随着通道宽度的增加,火焰面积和分岔现象减少,导致火焰高度升高。通过与梯形火焰热辐射模型的比较,提出了一种考虑火焰形状的加权多点源火焰热辐射模型。在热辐射预测方面,加权多点源模型比梯形模型精度略高,预测结果更接近实验值。它不仅能准确预测泄漏火灾的近距离辐射,还能准确预测远距离辐射,误差范围小于20%。这项工作为泄漏火灾事故中火焰热辐射的空间分布提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental and model study on flame radiation characteristics of ethanol spill fires in tunnel environment

Accidental leakage of liquid fuel frequently results in spill fire accidents, with radiation playing a pivotal role in flame propagation and environmental hazard. Conducted in a scale tunnel, ethanol spill fire experiment utilized five stainless steel rectangular channels, with length of 1 m, widths ranging from 0.1 to 0.3 m, and height of 0.03 m. The study focused on aspects such as flame area, bifurcation and fusion behaviors, flame height, and the distribution of flame heat radiation. Notably, as the channel width increased, the flame area and bifurcation phenomenon decreased, leading to taller flames. Drawing comparisons with the trapezoid flame thermal radiation model, we introduced a weighted multi-point source flame thermal radiation model that takes into account flame shape. In terms of predicting thermal radiation, weighted multi-point source model demonstrates a slightly higher degree of accuracy compared to trapezoid model, providing results closer to experimental values. It not only accurately predicted near-distance radiation from the spill fire but also distant radiation, with an error margin of less than 20%. This work offers crucial insights into the spatial distribution of flame heat radiation in spill fire accidents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信