Peihong Zhang, Chenghao Ye, Meiqing Xia, Jiaxing Li, Xuejing Hu
{"title":"隧道环境下乙醇溢出火灾火焰辐射特性的实验与模型研究","authors":"Peihong Zhang, Chenghao Ye, Meiqing Xia, Jiaxing Li, Xuejing Hu","doi":"10.1007/s10973-024-13764-7","DOIUrl":null,"url":null,"abstract":"<div><p>Accidental leakage of liquid fuel frequently results in spill fire accidents, with radiation playing a pivotal role in flame propagation and environmental hazard. Conducted in a scale tunnel, ethanol spill fire experiment utilized five stainless steel rectangular channels, with length of 1 m, widths ranging from 0.1 to 0.3 m, and height of 0.03 m. The study focused on aspects such as flame area, bifurcation and fusion behaviors, flame height, and the distribution of flame heat radiation. Notably, as the channel width increased, the flame area and bifurcation phenomenon decreased, leading to taller flames. Drawing comparisons with the trapezoid flame thermal radiation model, we introduced a weighted multi-point source flame thermal radiation model that takes into account flame shape. In terms of predicting thermal radiation, weighted multi-point source model demonstrates a slightly higher degree of accuracy compared to trapezoid model, providing results closer to experimental values. It not only accurately predicted near-distance radiation from the spill fire but also distant radiation, with an error margin of less than 20%. This work offers crucial insights into the spatial distribution of flame heat radiation in spill fire accidents.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 24","pages":"15105 - 15119"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and model study on flame radiation characteristics of ethanol spill fires in tunnel environment\",\"authors\":\"Peihong Zhang, Chenghao Ye, Meiqing Xia, Jiaxing Li, Xuejing Hu\",\"doi\":\"10.1007/s10973-024-13764-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accidental leakage of liquid fuel frequently results in spill fire accidents, with radiation playing a pivotal role in flame propagation and environmental hazard. Conducted in a scale tunnel, ethanol spill fire experiment utilized five stainless steel rectangular channels, with length of 1 m, widths ranging from 0.1 to 0.3 m, and height of 0.03 m. The study focused on aspects such as flame area, bifurcation and fusion behaviors, flame height, and the distribution of flame heat radiation. Notably, as the channel width increased, the flame area and bifurcation phenomenon decreased, leading to taller flames. Drawing comparisons with the trapezoid flame thermal radiation model, we introduced a weighted multi-point source flame thermal radiation model that takes into account flame shape. In terms of predicting thermal radiation, weighted multi-point source model demonstrates a slightly higher degree of accuracy compared to trapezoid model, providing results closer to experimental values. It not only accurately predicted near-distance radiation from the spill fire but also distant radiation, with an error margin of less than 20%. This work offers crucial insights into the spatial distribution of flame heat radiation in spill fire accidents.</p></div>\",\"PeriodicalId\":678,\"journal\":{\"name\":\"Journal of Thermal Analysis and Calorimetry\",\"volume\":\"149 24\",\"pages\":\"15105 - 15119\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Analysis and Calorimetry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10973-024-13764-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13764-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Experimental and model study on flame radiation characteristics of ethanol spill fires in tunnel environment
Accidental leakage of liquid fuel frequently results in spill fire accidents, with radiation playing a pivotal role in flame propagation and environmental hazard. Conducted in a scale tunnel, ethanol spill fire experiment utilized five stainless steel rectangular channels, with length of 1 m, widths ranging from 0.1 to 0.3 m, and height of 0.03 m. The study focused on aspects such as flame area, bifurcation and fusion behaviors, flame height, and the distribution of flame heat radiation. Notably, as the channel width increased, the flame area and bifurcation phenomenon decreased, leading to taller flames. Drawing comparisons with the trapezoid flame thermal radiation model, we introduced a weighted multi-point source flame thermal radiation model that takes into account flame shape. In terms of predicting thermal radiation, weighted multi-point source model demonstrates a slightly higher degree of accuracy compared to trapezoid model, providing results closer to experimental values. It not only accurately predicted near-distance radiation from the spill fire but also distant radiation, with an error margin of less than 20%. This work offers crucial insights into the spatial distribution of flame heat radiation in spill fire accidents.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.