The Luan Nguyen, Quynh Nhu Le Phan, Oanh Kieu Thi Vo, Tien Khoa Le, Van Viet Pham
{"title":"Evaluating the antibiotic adsorption ability of diatomite minerals: the role of treatment agents","authors":"The Luan Nguyen, Quynh Nhu Le Phan, Oanh Kieu Thi Vo, Tien Khoa Le, Van Viet Pham","doi":"10.1007/s10934-024-01684-8","DOIUrl":"10.1007/s10934-024-01684-8","url":null,"abstract":"<div><p>The uncontrolled use of antibiotics combined with ineffective treatment of antibiotic residues has led to the accumulation of antibiotics in water sources, directly threatening ecosystems. Diatomite is a good absorbent and a friendly and efficient material for removing pollutants from organic matter. In this study, diatomite from Phu Yen, Vietnam, was treated with many different agents, i.e., HCl, H<sub>2</sub>SO<sub>4</sub>, and NaOH, resulting in good adsorption of various antibiotics, such as tetracycline (TC), ciprofloxacin (CIP), tylosin (TLS), trimethoprim (TMP), and florfenicol (FFC). Furthermore, the TC antibiotic was chosen as a pollutant model to study the adsorption environment, adsorption isotherms, adsorption kinetics, and adsorption thermodynamics. Compared with raw diatomite, diatomite treated with HCl (D-HCl) has superior TC adsorption performance due to the removal of lotus fruit receptacle bud-like particles in the structure, which helps clear the pores and increases the specific surface area. Moreover, the change in surface charge leads to an increase in the electrostatic interaction force with TC. The TC adsorption of D-HCl follows the second-order kinetic model and the Langmuir isotherm model, with a high correlation coefficient of 0.9965 and a maximum adsorption capacity of 90.09 m<sup>2</sup> g<sup>−1</sup> at room temperature. The intra-particle diffusion model with the largest initial rate constant (k<sub>int1</sub>) suggests that the TC rapidly occupied the surface active sites of the D-HCl adsorbent. The high secondary rate constant (k<sub>int2</sub>) indicates that intragranular diffusion then proceeded immediately, which is consistent with the presence of multiple pore sizes within the D-HCl material. The adsorption thermodynamic parameters also show that the adsorption process occurs naturally, and the bond between TC and the D-HCl surface is a physical bond, indicating that D-HCl has potential for practical applications in removing antibiotics from water sources. Additionally, D-HCl shows promise as a perfect carrier in the field of photocatalysis.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"32 1","pages":"155 - 168"},"PeriodicalIF":2.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Betzabeth Jaime-Escalante, Alejandro Rolón-Ávalos, Luz María Melgoza-Contreras, Gerardo Leyva-Gómez, María José Emparan-Legaspi, Néstor Mendoza-Muñoz
{"title":"A novel strategy to produce spherical SBA-15 by polymeric macrospheres as a template for drug delivery","authors":"Betzabeth Jaime-Escalante, Alejandro Rolón-Ávalos, Luz María Melgoza-Contreras, Gerardo Leyva-Gómez, María José Emparan-Legaspi, Néstor Mendoza-Muñoz","doi":"10.1007/s10934-024-01685-7","DOIUrl":"10.1007/s10934-024-01685-7","url":null,"abstract":"<div><p>Mesoporous silica SBA-15 has been a material widely studied for drug delivery due to its high biocompatibility and chemical stability, its ordered mesoporous cavities allow drug loading. However, it has a non-spherical particle shape, making it difficult to use in solid dosage forms, where spherical particles are preferred for better flow and distribution. In this regard, this study presented a novel strategy to produce spheric SBA-15 using polymeric macrospheres of a pharmaceutical grade acidic-resistant copolymer (Eudragit<sup>®</sup>S) stabilized with Pluronic<sup>®</sup> 123, as a template. The macrospheres of Eudragit<sup>®</sup>S were fabricated using the double emulsion (W1/O/W2) solvent-diffusion technique and then were used as a template to synthesize macrospheres of SBA-15 following acidic hydrolysis. The physicochemical analysis revealed that the SBA-15 has a spherical morphology (SEM) with pores arranged in a hexagonal lattice (TEM). The XRD showed signals at 0.71, 0.88 y 2.03 °2θ, that were indexed at the Miller indices (100), (110), (200). Nitrogen adsorption-desorption isotherms (type IV, H3) demonstrated mesoporous characteristics with a pore size of 9.3 nm, a wall thickness of 3 nm, a pore volume of 0.7538 cm³g<sup>−1</sup>, and a surface area of 640 m²g<sup>−1</sup>. These SBA-15 macrospheres also showed a zero-order release of ibuprofen. The SBA-15 formation using Eudragit<sup>®</sup>S macrospheres suggests that P123 on the macrosphere acts as a spherical core, as shown by FT-IR analysis. The acid-resistant copolymer maintained macrosphere integrity, enabling the assembly of the SBA-15 mesostructure in a 24-hour manufacturing time under acidic conditions.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"32 1","pages":"141 - 153"},"PeriodicalIF":2.5,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10934-024-01685-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pitch-based spherical activated carbons with small mesopores for CO2 capture","authors":"Dongdong Zhang, Kaixi Li","doi":"10.1007/s10934-024-01687-5","DOIUrl":"10.1007/s10934-024-01687-5","url":null,"abstract":"<div><p>A simple suspension polymerization coupling with oxidative stabilization, carbonization, and H<sub>2</sub>O steam activation are applied to synthesize a series of hierarchical porous millimeter-sized pitch-based spherical activated carbons (PSAC). The as-obtained PSAC possess a tunable specific surface area from 975 m<sup>2</sup> g<sup>− 1</sup> to 1761 m<sup>2</sup> g<sup>− 1</sup>, a pore volume of 0.44 ~ 0.82 cm<sup>3</sup> g<sup>− 1</sup>, and spherical morphology via regulation of H<sub>2</sub>O activation time. The CO<sub>2</sub> adsorption capacity is closely related to the ultramicroporous volumes below 0.2 bar. The introduction of rich micropores has a positively influence on CO<sub>2</sub> adsorption capacity that can reach 2.59 mmol g<sup>− 1</sup> at 1.0 bar. When the pressure increasing to 5.0 bar, the micro-mesoporous PSAC shows higher CO<sub>2</sub> adsorption capacity of 7.23 mmol g<sup>− 1</sup> at 5 bar than microporous PSAC, indicating that the introduction of moderate mesopores can accelerate CO<sub>2</sub> diffusion rate and improve the utilization of micropores active adsorption sites. Based on the ideal adsorption solution theory (IAST), the CO<sub>2</sub>/N<sub>2</sub> and CO<sub>2</sub>/H<sub>2</sub>O adsorption selection factors <i>S</i><sub><i>ads</i></sub> of PSAC are as high as 49.9 and 8.29, respectively. Therefore, PSAC with high adsorption/desorption rate, good selectivity for CO<sub>2</sub>/N<sub>2</sub> and CO<sub>2</sub>/H<sub>2</sub>O, excellent renewability, and easy mass production provide potential options for industrial application of CO<sub>2</sub> capture.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"32 1","pages":"117 - 127"},"PeriodicalIF":2.5,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuai Zhang, Ning Yu, Yunyang Li, Pengyuan Zhang, Qichao Huang, Li Shen
{"title":"Correction: One-step synthesis of CuO/MCM-41 nanocomposites and their application in photocatalytic degradation of dyes","authors":"Shuai Zhang, Ning Yu, Yunyang Li, Pengyuan Zhang, Qichao Huang, Li Shen","doi":"10.1007/s10934-024-01680-y","DOIUrl":"10.1007/s10934-024-01680-y","url":null,"abstract":"","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 6","pages":"2191 - 2191"},"PeriodicalIF":2.5,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yakub Banothu, Swapna Peravali, D. V. Rama Koti Reddy, Saif M. H. Qaid, Vishwanath Hiremath, P. S. Srinivasa Babu
{"title":"Scalable synthesis of micro@meso porous carbon using crop-waste as cost-effective electrode materials for energy storage","authors":"Yakub Banothu, Swapna Peravali, D. V. Rama Koti Reddy, Saif M. H. Qaid, Vishwanath Hiremath, P. S. Srinivasa Babu","doi":"10.1007/s10934-024-01682-w","DOIUrl":"10.1007/s10934-024-01682-w","url":null,"abstract":"<div><p>Development of recycling pathways to produce sustainable and high-surface area carbon materials using crop-waste biomass is highly desirable for the design of cost-effective energy storage devices. In this study, three different activated carbon-based materials for supercapacitor application were prepared <i>via</i> simple metal halide activation on crop- waste biomass, specifically from the banana plant derivatives. The prepared samples with the single step activation show exceptional high surface area and large porosity, which are essential for elevating the energy storage performance. Among the different samples developed, stalk-derived activated carbon shows the highest surface area of 1311 m<sup>2</sup>/g and the average pore diameter of 1.77 nm. Nevertheless, all the samples constitute of three different porosities including micro-, meso-, and macro-pores responsible for the energy storage application. When tested for flexible electrode using porous carbon coated hydrophilic carbon cloth in symmetric supercapacitor, the device exhibits high specific/areal capacitance of 166.3 F/g/415.7 mF/cm<sup>2</sup> at a current density of 3 mA/cm<sup>2</sup> with exceptional cycling stability of 94% retention after 10,000 cycles. Moreover, the symmetric supercapacitor device enables the maximum energy and power densities of 17.2 Wh/kg and 2214 W/kg, respectively. This simple approach illustrates the utilization of biomass waste as an inexpensive resource for the development of energy storage devices with high energy density and power densities.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"32 1","pages":"107 - 116"},"PeriodicalIF":2.5,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ching-Yu Wang, Kai Shen, John M. Vohs, Raymond J. Gorte
{"title":"Modification of SBA-15 for stabilizing supported oxides","authors":"Ching-Yu Wang, Kai Shen, John M. Vohs, Raymond J. Gorte","doi":"10.1007/s10934-024-01679-5","DOIUrl":"10.1007/s10934-024-01679-5","url":null,"abstract":"<div><p>The effect of treating SBA-15 with a piranha solution at room temperature was studied for purposes of stabilizing a WO<sub>3</sub> film deposited by Atomic Layer Deposition (ALD). For unmodified SBA-15, the film was found to migrate out of the SBA-15 pore structure between 573 and 773 K; however, WO<sub>3</sub> remained within the pores in piranha-treated samples at 773 K, as demonstrated by X-Ray Diffraction and Transmission Electron Microscopy. Although N<sub>2</sub> adsorption isotherms showed that the pore structure of SBA-15 was unaffected by the piranha treatment, the silanol content increased, as shown by water adsorption isotherms and Diffuse Reflectance Infrared Spectra of the silanol region. Temperature-programmed desorption results for 2-propanol also suggested that the silanols were more reactive in the piranha-treated samples. The results demonstrate the importance of surface modification of SBA-15 for the preparation of supported-oxide catalysts.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"32 1","pages":"97 - 106"},"PeriodicalIF":2.5,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10934-024-01679-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lotus leaf-derived capacitive carbon for zinc-ion hybrid supercapacitors prepared by one-step molten salt carbonization","authors":"Renze Pang, Jingwen Cui, Liwen Ding, Shaowei Wu, Xinhua Cheng","doi":"10.1007/s10934-024-01678-6","DOIUrl":"10.1007/s10934-024-01678-6","url":null,"abstract":"<div><p>High-performance carbon-based cathode materials were prepared by means of a facile eco-friendly and cost-effective molten salt carbonization of lotus leaves in eutectic (Na/K)<sub>2</sub>CO<sub>3</sub> melt at 850 °C for aqueous zinc-ion hybrid supercapacitors (ZHSCs). Coin-type ZHSCs assembled as Carbon//Zn@Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> delivered 164.3 F g<sup>− 1</sup> at 0.2 A g<sup>− 1</sup> and 95.2 F g<sup>− 1</sup> at 20 A g<sup>− 1</sup> with capacitance retention of 57.9% using 2 M ZnSO<sub>4</sub> solution as electrolyte. Meanwhile, it delivered the maximum energy density of 65.2 Wh kg<sup>− 1</sup> at 169.0 W kg<sup>− 1</sup> and the maximum power density of 13.3 kW kg<sup>− 1</sup> at 23.3 Wh kg<sup>− 1</sup>. Benefitting from the multifunctionally interface-modified Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> layer acting as physical barrier and Zn<sup>2+</sup>-transfer ionic conductor, it revealed outstanding recyclability with capacitance retention of 96.6% and coulombic efficiency of 99.6% after 10,000 charge-discharge cycles at 1 A g<sup>-1</sup>. The synergistic effect on energy storage performance was discussed between porous structure, specific surface area, heteroatom doping and electrical conductivity.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"32 1","pages":"85 - 95"},"PeriodicalIF":2.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of various templates on the performance of MFI zeolite in catalytic synthesis of trioxane","authors":"Wenhui Wu, Kangrui Zhao, Kun Xiao","doi":"10.1007/s10934-024-01677-7","DOIUrl":"10.1007/s10934-024-01677-7","url":null,"abstract":"<div><p>ZSM-5 is widely used in the field of catalysis due to its stability and tunability. Its acidity can be adjusted not only by varying the initial gel composition, but also by incorporating different types of template to enhance its performance. Both [Ga]-MFI and [Ga, Al]-MFI have demonstrated promising performance in the catalytic trioxane of formaldehyde synthesis. However, there is currently a paucity of research examining the influence of different templates on the catalytic performance of [Ga]-MFI and [Ga, Al]-MFI. The influence of different templates on the structure, morphology, and pore structure of the zeolite has been revealed through the application of characterisation techniques, including XRD, MAS NMR spectroscopy, ICP-OES, BET, and SEM. The impact of different templates on the acid properties of [Ga]-MFI and [Ga, Al]-MFI was assessed using NH<sub>3</sub>-TPD and Py-IR. The results of the experimental investigation into the catalytic performance of zeolites synthesised with larger molecular-structured templates indicate that these zeolites exhibit superior catalytic performance. Furthermore, the introduction of Na + ions has been observed to reduce the space-time yield of the products.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"32 1","pages":"75 - 84"},"PeriodicalIF":2.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lia Kouchachvili, Guillaume Gagnon-Caya, Reda Djebbar
{"title":"Wood-derived biochar as a matrix for cost-effective and high-performing composite thermal energy storage materials","authors":"Lia Kouchachvili, Guillaume Gagnon-Caya, Reda Djebbar","doi":"10.1007/s10934-024-01638-0","DOIUrl":"10.1007/s10934-024-01638-0","url":null,"abstract":"<div><p>High energy storage density, affordability, and environmental friendliness are the key requirements for materials used in thermal energy storage systems. A new composite thermal energy storage material (TESM) with all these requirements was fabricated by utilizing a biochar matrix. Biochar was derived from the slow pyrolysis of forestry residues, an abundant source of underutilized biomass in Canada. The results of this experimental study indicate that the carbonization conditions of the biomass affect the structure and surface morphology of the biochar and consequently its thermal properties. Amongst the carbonization conditions that were investigated in this study, a peak temperature of 800 °C with a heating rate of 2.5 °C/min yielded a biochar with an energy storage capacity of 508 J/g. This biochar was then used as a matrix for fabricating the composite TESM with salt hydrate. The composite showed high thermal stability after ten hydration/dehydration cycles with an average thermal energy storage capacity of 3795 J/g. The cost of thermal energy storage in this composite was found to be $0.50 CAD /kWh<sub>th</sub>.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"32 1","pages":"55 - 66"},"PeriodicalIF":2.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10934-024-01638-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuzhi Shi, Yifeng Yu, Ruifa Yu, Ning Wang, Wei Lu, Xiaolin Han, Tangyao Sun, Pengcheng Li, Xiaodan Su, Zhaogang Teng, Ying Liu
{"title":"Facile synthesis of copper sulfide loaded mesoporous organosilica nanospheres with a triple-shelled hollow structure","authors":"Xuzhi Shi, Yifeng Yu, Ruifa Yu, Ning Wang, Wei Lu, Xiaolin Han, Tangyao Sun, Pengcheng Li, Xiaodan Su, Zhaogang Teng, Ying Liu","doi":"10.1007/s10934-024-01668-8","DOIUrl":"10.1007/s10934-024-01668-8","url":null,"abstract":"<div><p>Herein, copper sulfide loaded mesoporous organosilica nanospheres with a triple-shelled hollow structure (CuS/tHMONs) are successfully synthesized. The resulting CuS/tHMONs nanospheres exhibit a uniform diameter of 340 nm, mesoporous channels with a diameter of 3.8 nm, large pore volume, and triply separated cavities. High-angle annular dark-field scanning electron microscopy (HAADF-STEM) images confirm the presence of a high content of CuS nanoparticles within the CuS/tHMONs composite nanospheres. Moreover, the CuS/tHMONs nanospheres demonstrate high photothermal conversion efficiency and excellent photothermal stability. In vitro experiments reveal excellent biocompatibility of the CuS/tHMON nanospheres, and cytotoxic assays demonstrate their effectiveness in killing cancer cells through photothermal therapy.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"32 1","pages":"67 - 74"},"PeriodicalIF":2.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}