Betzabeth Jaime-Escalante, Alejandro Rolón-Ávalos, Luz María Melgoza-Contreras, Gerardo Leyva-Gómez, María José Emparan-Legaspi, Néstor Mendoza-Muñoz
{"title":"A novel strategy to produce spherical SBA-15 by polymeric macrospheres as a template for drug delivery","authors":"Betzabeth Jaime-Escalante, Alejandro Rolón-Ávalos, Luz María Melgoza-Contreras, Gerardo Leyva-Gómez, María José Emparan-Legaspi, Néstor Mendoza-Muñoz","doi":"10.1007/s10934-024-01685-7","DOIUrl":null,"url":null,"abstract":"<div><p>Mesoporous silica SBA-15 has been a material widely studied for drug delivery due to its high biocompatibility and chemical stability, its ordered mesoporous cavities allow drug loading. However, it has a non-spherical particle shape, making it difficult to use in solid dosage forms, where spherical particles are preferred for better flow and distribution. In this regard, this study presented a novel strategy to produce spheric SBA-15 using polymeric macrospheres of a pharmaceutical grade acidic-resistant copolymer (Eudragit<sup>®</sup>S) stabilized with Pluronic<sup>®</sup> 123, as a template. The macrospheres of Eudragit<sup>®</sup>S were fabricated using the double emulsion (W1/O/W2) solvent-diffusion technique and then were used as a template to synthesize macrospheres of SBA-15 following acidic hydrolysis. The physicochemical analysis revealed that the SBA-15 has a spherical morphology (SEM) with pores arranged in a hexagonal lattice (TEM). The XRD showed signals at 0.71, 0.88 y 2.03 °2θ, that were indexed at the Miller indices (100), (110), (200). Nitrogen adsorption-desorption isotherms (type IV, H3) demonstrated mesoporous characteristics with a pore size of 9.3 nm, a wall thickness of 3 nm, a pore volume of 0.7538 cm³g<sup>−1</sup>, and a surface area of 640 m²g<sup>−1</sup>. These SBA-15 macrospheres also showed a zero-order release of ibuprofen. The SBA-15 formation using Eudragit<sup>®</sup>S macrospheres suggests that P123 on the macrosphere acts as a spherical core, as shown by FT-IR analysis. The acid-resistant copolymer maintained macrosphere integrity, enabling the assembly of the SBA-15 mesostructure in a 24-hour manufacturing time under acidic conditions.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"32 1","pages":"141 - 153"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10934-024-01685-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01685-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Mesoporous silica SBA-15 has been a material widely studied for drug delivery due to its high biocompatibility and chemical stability, its ordered mesoporous cavities allow drug loading. However, it has a non-spherical particle shape, making it difficult to use in solid dosage forms, where spherical particles are preferred for better flow and distribution. In this regard, this study presented a novel strategy to produce spheric SBA-15 using polymeric macrospheres of a pharmaceutical grade acidic-resistant copolymer (Eudragit®S) stabilized with Pluronic® 123, as a template. The macrospheres of Eudragit®S were fabricated using the double emulsion (W1/O/W2) solvent-diffusion technique and then were used as a template to synthesize macrospheres of SBA-15 following acidic hydrolysis. The physicochemical analysis revealed that the SBA-15 has a spherical morphology (SEM) with pores arranged in a hexagonal lattice (TEM). The XRD showed signals at 0.71, 0.88 y 2.03 °2θ, that were indexed at the Miller indices (100), (110), (200). Nitrogen adsorption-desorption isotherms (type IV, H3) demonstrated mesoporous characteristics with a pore size of 9.3 nm, a wall thickness of 3 nm, a pore volume of 0.7538 cm³g−1, and a surface area of 640 m²g−1. These SBA-15 macrospheres also showed a zero-order release of ibuprofen. The SBA-15 formation using Eudragit®S macrospheres suggests that P123 on the macrosphere acts as a spherical core, as shown by FT-IR analysis. The acid-resistant copolymer maintained macrosphere integrity, enabling the assembly of the SBA-15 mesostructure in a 24-hour manufacturing time under acidic conditions.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.