Xuzhi Shi, Yifeng Yu, Ruifa Yu, Ning Wang, Wei Lu, Xiaolin Han, Tangyao Sun, Pengcheng Li, Xiaodan Su, Zhaogang Teng, Ying Liu
{"title":"硫化铜负载介孔有机硅纳米球三重壳中空结构的简便合成","authors":"Xuzhi Shi, Yifeng Yu, Ruifa Yu, Ning Wang, Wei Lu, Xiaolin Han, Tangyao Sun, Pengcheng Li, Xiaodan Su, Zhaogang Teng, Ying Liu","doi":"10.1007/s10934-024-01668-8","DOIUrl":null,"url":null,"abstract":"<p>Herein, copper sulfide loaded mesoporous organosilica nanospheres with a triple-shelled hollow structure (CuS/tHMONs) are successfully synthesized. The resulting CuS/tHMONs nanospheres exhibit a uniform diameter of 340 nm, mesoporous channels with a diameter of 3.8 nm, large pore volume, and triply separated cavities. High-angle annular dark-field scanning electron microscopy (HAADF-STEM) images confirm the presence of a high content of CuS nanoparticles within the CuS/tHMONs composite nanospheres. Moreover, the CuS/tHMONs nanospheres demonstrate high photothermal conversion efficiency and excellent photothermal stability. In vitro experiments reveal excellent biocompatibility of the CuS/tHMON nanospheres, and cytotoxic assays demonstrate their effectiveness in killing cancer cells through photothermal therapy.</p>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"62 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile synthesis of copper sulfide loaded mesoporous organosilica nanospheres with a triple-shelled hollow structure\",\"authors\":\"Xuzhi Shi, Yifeng Yu, Ruifa Yu, Ning Wang, Wei Lu, Xiaolin Han, Tangyao Sun, Pengcheng Li, Xiaodan Su, Zhaogang Teng, Ying Liu\",\"doi\":\"10.1007/s10934-024-01668-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Herein, copper sulfide loaded mesoporous organosilica nanospheres with a triple-shelled hollow structure (CuS/tHMONs) are successfully synthesized. The resulting CuS/tHMONs nanospheres exhibit a uniform diameter of 340 nm, mesoporous channels with a diameter of 3.8 nm, large pore volume, and triply separated cavities. High-angle annular dark-field scanning electron microscopy (HAADF-STEM) images confirm the presence of a high content of CuS nanoparticles within the CuS/tHMONs composite nanospheres. Moreover, the CuS/tHMONs nanospheres demonstrate high photothermal conversion efficiency and excellent photothermal stability. In vitro experiments reveal excellent biocompatibility of the CuS/tHMON nanospheres, and cytotoxic assays demonstrate their effectiveness in killing cancer cells through photothermal therapy.</p>\",\"PeriodicalId\":660,\"journal\":{\"name\":\"Journal of Porous Materials\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Porous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s10934-024-01668-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s10934-024-01668-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Facile synthesis of copper sulfide loaded mesoporous organosilica nanospheres with a triple-shelled hollow structure
Herein, copper sulfide loaded mesoporous organosilica nanospheres with a triple-shelled hollow structure (CuS/tHMONs) are successfully synthesized. The resulting CuS/tHMONs nanospheres exhibit a uniform diameter of 340 nm, mesoporous channels with a diameter of 3.8 nm, large pore volume, and triply separated cavities. High-angle annular dark-field scanning electron microscopy (HAADF-STEM) images confirm the presence of a high content of CuS nanoparticles within the CuS/tHMONs composite nanospheres. Moreover, the CuS/tHMONs nanospheres demonstrate high photothermal conversion efficiency and excellent photothermal stability. In vitro experiments reveal excellent biocompatibility of the CuS/tHMON nanospheres, and cytotoxic assays demonstrate their effectiveness in killing cancer cells through photothermal therapy.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.