Lia Kouchachvili, Guillaume Gagnon-Caya, Reda Djebbar
{"title":"以木质生物炭为基质,开发经济高效的高性能复合热能储存材料","authors":"Lia Kouchachvili, Guillaume Gagnon-Caya, Reda Djebbar","doi":"10.1007/s10934-024-01638-0","DOIUrl":null,"url":null,"abstract":"<p>High energy storage density, affordability, and environmental friendliness are the key requirements for materials used in thermal energy storage systems. A new composite thermal energy storage material (TESM) with all these requirements was fabricated by utilizing a biochar matrix. Biochar was derived from the slow pyrolysis of forestry residues, an abundant source of underutilized biomass in Canada. The results of this experimental study indicate that the carbonization conditions of the biomass affect the structure and surface morphology of the biochar and consequently its thermal properties. Amongst the carbonization conditions that were investigated in this study, a peak temperature of 800 °C with a heating rate of 2.5 °C/min yielded a biochar with an energy storage capacity of 508 J/g. This biochar was then used as a matrix for fabricating the composite TESM with salt hydrate. The composite showed high thermal stability after ten hydration/dehydration cycles with an average thermal energy storage capacity of 3795 J/g. The cost of thermal energy storage in this composite was found to be $0.50 CAD /kWh<sub>th</sub>.</p>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"16 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wood-derived biochar as a matrix for cost-effective and high-performing composite thermal energy storage materials\",\"authors\":\"Lia Kouchachvili, Guillaume Gagnon-Caya, Reda Djebbar\",\"doi\":\"10.1007/s10934-024-01638-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High energy storage density, affordability, and environmental friendliness are the key requirements for materials used in thermal energy storage systems. A new composite thermal energy storage material (TESM) with all these requirements was fabricated by utilizing a biochar matrix. Biochar was derived from the slow pyrolysis of forestry residues, an abundant source of underutilized biomass in Canada. The results of this experimental study indicate that the carbonization conditions of the biomass affect the structure and surface morphology of the biochar and consequently its thermal properties. Amongst the carbonization conditions that were investigated in this study, a peak temperature of 800 °C with a heating rate of 2.5 °C/min yielded a biochar with an energy storage capacity of 508 J/g. This biochar was then used as a matrix for fabricating the composite TESM with salt hydrate. The composite showed high thermal stability after ten hydration/dehydration cycles with an average thermal energy storage capacity of 3795 J/g. The cost of thermal energy storage in this composite was found to be $0.50 CAD /kWh<sub>th</sub>.</p>\",\"PeriodicalId\":660,\"journal\":{\"name\":\"Journal of Porous Materials\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Porous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s10934-024-01638-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s10934-024-01638-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Wood-derived biochar as a matrix for cost-effective and high-performing composite thermal energy storage materials
High energy storage density, affordability, and environmental friendliness are the key requirements for materials used in thermal energy storage systems. A new composite thermal energy storage material (TESM) with all these requirements was fabricated by utilizing a biochar matrix. Biochar was derived from the slow pyrolysis of forestry residues, an abundant source of underutilized biomass in Canada. The results of this experimental study indicate that the carbonization conditions of the biomass affect the structure and surface morphology of the biochar and consequently its thermal properties. Amongst the carbonization conditions that were investigated in this study, a peak temperature of 800 °C with a heating rate of 2.5 °C/min yielded a biochar with an energy storage capacity of 508 J/g. This biochar was then used as a matrix for fabricating the composite TESM with salt hydrate. The composite showed high thermal stability after ten hydration/dehydration cycles with an average thermal energy storage capacity of 3795 J/g. The cost of thermal energy storage in this composite was found to be $0.50 CAD /kWhth.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.