{"title":"Two-phase flow oscillations in microchannel convective boiling","authors":"Man Lee, Yi-Kuen Lee, Y. Zohar","doi":"10.1109/MEMSYS.2007.4433164","DOIUrl":"https://doi.org/10.1109/MEMSYS.2007.4433164","url":null,"abstract":"A thermal microsystem with integrated heaters, pressure and temperature microsensors, has been fabricated to study local temperature and pressure fluctuations occurring in forced convective boiling in microchannels. The observed two-phase flows can be classified into two patterns: oscillating liquid/vapour interface and liquid burst flow; both leading to unsteady temperature and pressure fields. FFT power spectra of the measured signals are correlated with flow visualizations to analyse the two-phase flow modes. The dominant fluctuation frequency of each flow mode increases with input power; and, under similar conditions, the frequency of the periodically oscillating liquid/vapour interface is higher than the dominant frequency of the liquid bursts. Dimensional analysis is performed to derive empirical correlations for the dimensionless fluctuation frequency, Strouhal number, for both flow patterns.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"60 1","pages":"635-638"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88183314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Agarwal, H. Mehta, R. Candler, S. Chandorkar, Bongsang Kim, M. Hopcroft, R. Melamud, G. Bahl, G. Yama, T. Kenny, B. Murmann
{"title":"Impact of miniaturization on the current handling of electrostatic MEMS resonators","authors":"M. Agarwal, H. Mehta, R. Candler, S. Chandorkar, Bongsang Kim, M. Hopcroft, R. Melamud, G. Bahl, G. Yama, T. Kenny, B. Murmann","doi":"10.1109/MEMSYS.2007.4433092","DOIUrl":"https://doi.org/10.1109/MEMSYS.2007.4433092","url":null,"abstract":"This paper studies the scaling of nonlinearities with miniaturization in double-ended-tuning-fork (DETF) MEMS resonators. We find that the increase in resonant frequency associated with beam length reduction strongly improves current handling; e.g. shortening the beams by a factor of 5 results in a 100- fold increase in sustainable signal current. Using the nonlinear models and scaling observed in this work, we present considerations for optimization of the resonant structure design and the electrostatic gap size.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"16 1","pages":"783-786"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75624755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Tseng, Shu-Ting Jhuang, Chung-Shi Yang, F. Tseng
{"title":"gold-nanoparticle-enhanced IGG immunological detection by in-situ fabry-perot sensor","authors":"Y. Tseng, Shu-Ting Jhuang, Chung-Shi Yang, F. Tseng","doi":"10.1109/MEMSYS.2007.4432985","DOIUrl":"https://doi.org/10.1109/MEMSYS.2007.4432985","url":null,"abstract":"This paper proposes a needle-type biosensor for immunological application, which combines the abilities of real-time monitoring, in-situ measurement and high sensitivity, by adopting gold-nanoparticles (GNPs) coated with antibody to enhance the signal of Fabry-Perot (F-P) interferometry in an optic fiber sensing system. Strong reflection induced by larger index mismatch and longer optical path from GNPs-protein conjugation are suggested to attribute most to the signal enhancement in F-P interference shift. The experiments carry out the monitoring of immuno-sensing in real-time by the employment of rabbit IgG conjugate to GNPs-anti-rabbit IgG And the detection limit was demonstrated to approach 0.17 nM (-25.5 ng/ml), which was three orders of magnitude better than those of the traditional fiber-based F-P biosensors. Besides, the reproducibility of the sensor has been tested through at least three cycles of detection/surface-regeneration process and demonstrated a reasonable consistency. The relationship between the concentrations of GNPs-antibody and F-P spectrum shift has also been characterized. The time-constant of this sensor to complete one cycle of biomolecule-detection and surface-regeneration can be as low as 4 minutes.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"14 1","pages":"441-444"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75319428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Nagano, T. Shibata, K. Sakoda, M. Inoue, S. Hasaka, T. Takano, T. Ikehara, R. Maeda
{"title":"Environment friendly MEMS fabrication: Proposal of new D-RIE process gases for reduction of green house effect","authors":"S. Nagano, T. Shibata, K. Sakoda, M. Inoue, S. Hasaka, T. Takano, T. Ikehara, R. Maeda","doi":"10.1109/MEMSYS.2007.4433105","DOIUrl":"https://doi.org/10.1109/MEMSYS.2007.4433105","url":null,"abstract":"Environmental emission volume of green house gases such as SF<sub>6</sub> and C<sub>4</sub>F<sub>8</sub>, consumed for Si deep etching process in MEMS fabrication, are increasing followed by the MEMS market growth. To reduce the emitted green house gases, alternative C<sub>3</sub>F<sub>6</sub> and IF<sub>5</sub> were investigated to be applied for MEMS etching process instead of conventional Bosch process gases. The C<sub>3</sub>F<sub>6</sub> and IF<sub>5</sub> gases have very small global warming potential, so that they were useful to reduce over 95% of the green house gases maintaining the good etching performance on both etching rate and etching profile. The reduction of warming gas emission by the new gases is estimated that approximately 43 trees might be conserved during one etching process of a wafer to 300 mum. In addition to this merit, IF<sub>5</sub> is found to be applied for anisotropic trench etching without Bosch process.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"75 1","pages":"341-344"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91493813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A two-axis piezoelectric tilting micromirror with a newly developed PZT-meandering actuator","authors":"M. Tani, M. Akamatsu, Y. Yasuda, H. Toshiyoshi","doi":"10.1109/MEMSYS.2007.4432994","DOIUrl":"https://doi.org/10.1109/MEMSYS.2007.4432994","url":null,"abstract":"In this paper, we propose a new mechanical design of piezoelectric unimorph actuator that generate large static deflection angle by accumulating angular displacement in a cascaded piezoelectric cantilever formed in a meandering shape. The new actuator design was adopted in a double-gimbal two-dimensional optical scanner of a 4 mm times 6 mm foot print. The scanner delivered a relatively large static angle of mechanical plusmn8.6deg at an applied voltage of 20 Vdc at a non-resonant operation.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"39 1","pages":"699-702"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80951209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Localized back-side heating for low-temperature wafer-level bonding","authors":"J. Mitchell, K. Najafi","doi":"10.1109/MEMSYS.2007.4433146","DOIUrl":"https://doi.org/10.1109/MEMSYS.2007.4433146","url":null,"abstract":"A new wafer-level method has been developed for localized heating of the bond region between two wafers. Using this method, one of the two wafers to be bonded is heated from the backside, and the other is cooled from the backside, so that heat flows through the bond regions while the device regions stay relatively cool. In this work, integrated temperature sensors were used to measure the temperature at different distances from the bond region during Si to glass and Si to Si (with a -7 mum SiO2) bonds in order to verify the utility of this bonding technique. The temperature was measured to be only 25% and 37% of the bond ring temperature at 650 mum away from the bond ring for a Si to glass bond and 250 mum away from the bond ring for a Si to Si (with a ~7 mum oxide) bond respectively for bond ring temperatures up to 410degC and 200degC. Furthermore a successful Au-Si eutectic bond was demonstrated using this technique.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"29 1","pages":"377-380"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81442835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A high-resolution amperometric acetylcholine biosensor based on nano self-assembly of carbon nanotubes","authors":"W. Xue, T. Cui","doi":"10.1109/MEMSYS.2007.4433151","DOIUrl":"https://doi.org/10.1109/MEMSYS.2007.4433151","url":null,"abstract":"We present a carbon nanotube thin film based device as a high-resolution acetylcholine sensor. Carbon nanotube and acetylcholinesterase thin films are self-assembled on a silicon substrate as conducting and sensing layers, respectively. Both films are deposited using layer-by-layer self-assembly process. The conductance of the carbon nanotube film is changed due to the generated hydrogen ions in the acetylcholine solution. The resolution of the device is measured as 100 pM. Due to its high resolution, small size, and low cost, the carbon nanotube biosensor has tremendous potential for applications to medical research and clinical diagnosis.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"80 1","pages":"529-532"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76669689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Goto, T. Matsunaga, Y. Matsuoka, K. Kuroda, M. Esashi, Y. Haga
{"title":"Development of high-resolution intraluminal and intravascular MRI probe using microfabrication on cylindrical substrates","authors":"S. Goto, T. Matsunaga, Y. Matsuoka, K. Kuroda, M. Esashi, Y. Haga","doi":"10.1109/MEMSYS.2007.4433065","DOIUrl":"https://doi.org/10.1109/MEMSYS.2007.4433065","url":null,"abstract":"The objective of this study is development of high-resolution intraluminal and intravascular MRI probe using microfabrication on cylindrical substrates. MRI holds promise for in vivo characterization due to its potential for obtaining high-resolution images and its sensitivity to the compositional characteristics of lesion. By placing a receive coil in the human body, NMR signals from the tissue surrounding the coil can be detected sensitively and the method enables in vivo high-resolution imaging (high spatial resolution and high spectroscopic resolution). The preferable receive coil has homogeneous RF receptivity around the probe and high-SNR. Novel coil designs and/or multi-coil have capabilities to meet these demands. To connect the tuning/matching circuit and amplifier circuit near the coil is needed to improve SNR of the system. Microfabrication on cylindrical substrate is one of methods for fabricating arbitrary coil pattern and the tuning/matching circuit on the tube with small diameters. Using a maskless lithography technique, solenoid coil, tilted coil and saddle shaped coil have been fabricated on glass tube with 2 mm O.D.. Imaging test of the coils were performed on 3 T MRI in a 2% agar phantom.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"35 1","pages":"329-332"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77272337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanoelectromechanical systems: Potential, progress, & projections","authors":"M. Roukes","doi":"10.1109/MEMSYS.2007.4433022","DOIUrl":"https://doi.org/10.1109/MEMSYS.2007.4433022","url":null,"abstract":"Nanoelectromechanical systems (NEMS) represent the next regime of size reduction beyond the microscale for mechanical devices. In their tiniest, ultimate realization, NEMS will be formed with sub-nanometer scale precision from atomic- and molecular-scale mechanical elements as first envisaged by Feynman (1). Although nanowire and nanotube based NEMS today verge on this domain, their assembly into functional devices remains more of an art than a science, as they are typically fabricated one-by-one by complicated means with low yield. By contrast, the most robust forms of NEMS are currently patterned by top-down methods; in fact their production is now being scaled to enable large-scale integration over 200 mm wafers with minimum feature sizes that are below 50 nm. In this paper I will describe how nanoscale mechanical elements provide benefits beyond the obvious, that is, benefits in addition to the possibility of increased device density. The reduced size of NEMS enables mechanical functionality that completely transcends what is possible at the microscale with MEMS (2). However, size reduction to the nanoscale may not be a panacea for all applications - for some applications larger may still be better!","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"61 1","pages":"93-94"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85782097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Bozkurt, A. Paul, S. Pulla, A. Ramkumar, B. Blossey, J. Ewer, R. Gilmour, A. Lal
{"title":"Microprobe microsystem platform inserted during early metamorphosis to actuate insect flight muscle","authors":"A. Bozkurt, A. Paul, S. Pulla, A. Ramkumar, B. Blossey, J. Ewer, R. Gilmour, A. Lal","doi":"10.1109/MEMSYS.2007.4432976","DOIUrl":"https://doi.org/10.1109/MEMSYS.2007.4432976","url":null,"abstract":"Following from early work demonstrating that early pupal- stage inserts are accepted by insects [9], a microprobe based microsystem platform was designed with respect to the position of the muscle bundles, and was inserted into the thorax at 4 days of the pupal stage. The platform is roughly 8times7times1.5 mm3 in size with probe thickness of 200 mum and weighs 500 mg, which the moth is able to successfully carry in the adult stage. In addition to the microsystem, an anchor to easily manipulate the adults was successfully formed in the insect by placing a glass-capillary through the pupae. The pupae emerged successfully, and the microsystem was used to characterize the potential for flight control. As part of the work to determine the microplatform design, we determined the strength-interval profiles of the pulses needed for direct muscle actuation. Two sets of flight muscles, which are symmetrically present on either side of the thorax, were differentially electrically actuated, which potentially influences the individual wing beat frequency and amplitude resulting in controlled turning behavior during flight.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"9 1","pages":"405-408"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88452805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}