S. Nagano, T. Shibata, K. Sakoda, M. Inoue, S. Hasaka, T. Takano, T. Ikehara, R. Maeda
{"title":"环境友好型MEMS制造:提出新的D-RIE工艺气体以减少温室效应","authors":"S. Nagano, T. Shibata, K. Sakoda, M. Inoue, S. Hasaka, T. Takano, T. Ikehara, R. Maeda","doi":"10.1109/MEMSYS.2007.4433105","DOIUrl":null,"url":null,"abstract":"Environmental emission volume of green house gases such as SF<sub>6</sub> and C<sub>4</sub>F<sub>8</sub>, consumed for Si deep etching process in MEMS fabrication, are increasing followed by the MEMS market growth. To reduce the emitted green house gases, alternative C<sub>3</sub>F<sub>6</sub> and IF<sub>5</sub> were investigated to be applied for MEMS etching process instead of conventional Bosch process gases. The C<sub>3</sub>F<sub>6</sub> and IF<sub>5</sub> gases have very small global warming potential, so that they were useful to reduce over 95% of the green house gases maintaining the good etching performance on both etching rate and etching profile. The reduction of warming gas emission by the new gases is estimated that approximately 43 trees might be conserved during one etching process of a wafer to 300 mum. In addition to this merit, IF<sub>5</sub> is found to be applied for anisotropic trench etching without Bosch process.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"75 1","pages":"341-344"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Environment friendly MEMS fabrication: Proposal of new D-RIE process gases for reduction of green house effect\",\"authors\":\"S. Nagano, T. Shibata, K. Sakoda, M. Inoue, S. Hasaka, T. Takano, T. Ikehara, R. Maeda\",\"doi\":\"10.1109/MEMSYS.2007.4433105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmental emission volume of green house gases such as SF<sub>6</sub> and C<sub>4</sub>F<sub>8</sub>, consumed for Si deep etching process in MEMS fabrication, are increasing followed by the MEMS market growth. To reduce the emitted green house gases, alternative C<sub>3</sub>F<sub>6</sub> and IF<sub>5</sub> were investigated to be applied for MEMS etching process instead of conventional Bosch process gases. The C<sub>3</sub>F<sub>6</sub> and IF<sub>5</sub> gases have very small global warming potential, so that they were useful to reduce over 95% of the green house gases maintaining the good etching performance on both etching rate and etching profile. The reduction of warming gas emission by the new gases is estimated that approximately 43 trees might be conserved during one etching process of a wafer to 300 mum. In addition to this merit, IF<sub>5</sub> is found to be applied for anisotropic trench etching without Bosch process.\",\"PeriodicalId\":6388,\"journal\":{\"name\":\"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"75 1\",\"pages\":\"341-344\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2007.4433105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2007.4433105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Environment friendly MEMS fabrication: Proposal of new D-RIE process gases for reduction of green house effect
Environmental emission volume of green house gases such as SF6 and C4F8, consumed for Si deep etching process in MEMS fabrication, are increasing followed by the MEMS market growth. To reduce the emitted green house gases, alternative C3F6 and IF5 were investigated to be applied for MEMS etching process instead of conventional Bosch process gases. The C3F6 and IF5 gases have very small global warming potential, so that they were useful to reduce over 95% of the green house gases maintaining the good etching performance on both etching rate and etching profile. The reduction of warming gas emission by the new gases is estimated that approximately 43 trees might be conserved during one etching process of a wafer to 300 mum. In addition to this merit, IF5 is found to be applied for anisotropic trench etching without Bosch process.