Sheng-Ren Chiu, Chung-Yang Sue, Lu-Pu Liao, Li-Tao Teng, Y. Hsu, Y. Su
{"title":"A fully integrated circuit for MEMS vibrating gyroscope using standard 0.25um CMOS process","authors":"Sheng-Ren Chiu, Chung-Yang Sue, Lu-Pu Liao, Li-Tao Teng, Y. Hsu, Y. Su","doi":"10.1109/IMPACT.2011.6117258","DOIUrl":"https://doi.org/10.1109/IMPACT.2011.6117258","url":null,"abstract":"This paper presents an all-in-one fully integrated circuit solution for a vibrating micro-electromechanical gyroscope system using standard 0.25um 1P5M low voltage CMOS process. The analog parts of the system include a trans-impedance amplifier (TIA) with adaptive gain control (AGC) for the resonator driving loop, a sigma-delta modulator with gain/offset trimming function for the Coriolis signal read-out and a modified all PMOS charge pump for the high DC voltage. The digital signal processing parts include a trimming/control logic circuit and an I2C interface. SOG-bulk micromachining and deep reactive ion etching (DRIE) are adopted to fabricate the gyroscope sensor element with high aspect-ratio sensing structure and high yield. The experimental results indicate that the noise floor achieves 0.051° / s/ √Hz and the scale factor is 7mV/ °/s of the proposed two chip MEMS gyroscope system.","PeriodicalId":6360,"journal":{"name":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","volume":"50 1","pages":"315-318"},"PeriodicalIF":0.0,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91137848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pei-Chi Chen, Yen-Fu Su, Shin-Yueh Yang, K. Chiang
{"title":"Determination of silicon die initial crack using acoustic emission technique","authors":"Pei-Chi Chen, Yen-Fu Su, Shin-Yueh Yang, K. Chiang","doi":"10.1109/IMPACT.2011.6117283","DOIUrl":"https://doi.org/10.1109/IMPACT.2011.6117283","url":null,"abstract":"Three-dimensional chip stacking packaging has become increasingly popular in the electronic packaging industry because of the present market demand on high performance, high capacity and small form factor products. As a result, silicon wafers have to be ground through wafer-thinning processes to achieve greater packaging density. However, induction of cracks on the chips during stacking process or with the use of a device is possible. Therefore, the current research aims to determine the maximum allowable force on a (1 0 0) silicon die using ball-breaker test with an acoustic emission (AE) system. To compare with the experiment data, the finite element analysis was employed using commercial software ANSYS/LS-DYNA3D® to determine the silicon die strength. The results show that the maximum allowable force for a 30 mm × 30 mm × 0.2 mm (1 0 0) silicon is 14.42 N. The value was introduced to simulation to determine the strength of silicon die. The strength of silicon die is 618 MPa, which is lower than that obtained from a previous research that conducted the ball-breaker test without an AE system, the allowable strength is defined as when silicon is fully cracked. The advantage of the method developed in this research is the AE system could detect the failure instantly and obtain the event of initial cracking. The modified ball-breaker test could avoid an overestimation in determining the die strength.","PeriodicalId":6360,"journal":{"name":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","volume":"66 1","pages":"83-86"},"PeriodicalIF":0.0,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90363368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. So, Albert Lan, C. Hsiao, Daniel Yu, Nistec Chang, F. Kao
{"title":"A introduction of sFCCSP — Fine pitch low profile FCCSP solution","authors":"E. So, Albert Lan, C. Hsiao, Daniel Yu, Nistec Chang, F. Kao","doi":"10.1109/IMPACT.2011.6117241","DOIUrl":"https://doi.org/10.1109/IMPACT.2011.6117241","url":null,"abstract":"As for mainstream portable application (Mobile Phone, Tablet, Handset Gamer), the higher density (array IO pitch <= 100um), higher thermal performance (better theta JA than overmold FCCSP) and lower profile (compare with overmold FCCSP) is necessary for package developing. As to satisfy the marketing needs, some suitable solution can be considered: Utilize Cu Pillar Bump to satisfy the fine pitch request; and also with the exposed die FCCSP to cover the lower profile & better thermal performance. As to come out an easy way to recognize the package type of this combination, the package type of “sFCCSP” (SPIL proposed FCCSP-Exposed Die Cu Pillar FCCSP) had be called for further discussion. In general, Cu Pillar was the fine pitch solution of FCCSP (<130um bump pitch), as the next generation of low IO(<200) application flip chip solution, Cu Pillar can provide a feasibility for better electrical performance but reasonable cost (design-in is necessary), and upcoming challenge is the ELK protection for 40nm / 28nm even finer IC technology. As regard the exposed die FC solution, it is obvious to realize the benefit of skipping overmold 60∼80um thickness for package total height reduction. Of course, the trade-off is either back side surface bleeding or package warpage. In this report, there is a test vehicle to show how we overcome the potential ELK crack & Die bleeding & package warpage issue to approach the mainstream technology for portable market.","PeriodicalId":6360,"journal":{"name":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","volume":"44 1","pages":"126-128"},"PeriodicalIF":0.0,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90391613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estimation of thermal constriction resistance for simple thermal network analysis of electronic components","authors":"T. Tomimura, M. Ishizuka","doi":"10.1109/IMPACT.2011.6117171","DOIUrl":"https://doi.org/10.1109/IMPACT.2011.6117171","url":null,"abstract":"Related to the thermal contact resistance, lots of studies have been done on the thermal constriction resistance, which is a measure of the additional temperature drop at the contact interface [1]. And almost all of those studies have been conducted based on the two-dimensional cylindrical coordinates system. In the same way, the additional thermal resistance associated with the geometrical constriction is often encountered in the electronic components like relay circuits, the printed circuit boards, and so on. In these cases, however, heat is frequently transferred through a thin and narrow passage, which should be treated by two-dimensional rectangular coordinates system.","PeriodicalId":6360,"journal":{"name":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","volume":"43 1","pages":"246-248"},"PeriodicalIF":0.0,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88054503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vapor chamber in high-end VGA card","authors":"Jung-Chang Wang, Wei-Jui Chen","doi":"10.1109/IMPACT.2011.6117204","DOIUrl":"https://doi.org/10.1109/IMPACT.2011.6117204","url":null,"abstract":"The vapor chamber has been verified the excellent heat transfer efficiency and heat spreading performance utilized particularly in many high-power and small area heat sources. This paper analyzes and compares the thermal performance of a vapor chamber-based thermal module with a traditional Cu metal based plate embedded three heat pipes of 6 mm diameter at high heat flux GPU above 165 Watt. They are estimated and simulated the optimum fin design of aluminum heat sink through computational numerical method and thermal resistance analysis at constant P-Q performance curve of a same commercial blower. These results show that the total thermal resistance value of vapor chamber-based thermal module are under 0.273 °C/W from simulation analytical data and that of heat-pipes and copper based plate thermal module are all over 0.273 °C/W. Therefore, the thermal performance of vapor chamber-based thermal module can be accurately simulated and analyzed by applying the method introduced in this paper. The vapor chamber-based thermal module can achieve the optimum thermal performance and the critical heat flux may exceed 100 Watt/cm2. Consequently, the vapor chamber-based thermal module introduced in this paper is able to cope with future GPU named RV 970 and GTX 590 with high heat flux of more than 60 Watt/cm2.","PeriodicalId":6360,"journal":{"name":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","volume":"105 1","pages":"393-396"},"PeriodicalIF":0.0,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86944061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A vision based low-frequency electro-hydraulic fatigue testing machine","authors":"Ray-Hwa Wong, Mingfang Li, Ying T. Wang","doi":"10.1109/IMPACT.2011.6117273","DOIUrl":"https://doi.org/10.1109/IMPACT.2011.6117273","url":null,"abstract":"In the vision based control system, the lower frame per second and the delay of image processes are main reasons to degrade the control performance. These factors have no significant influence in the low frequency material testing. In experiments, vision based electro-hydraulic material testing machine is developed by self-organizing sliding mode fuzzy controller and to carry out dynamic tracking control under 1Hz. Square, sinusoidal and triangular waveforms are applied to analyze the control performance of this electro hydraulic testing machine, and then it will discuss the feasibility of non-contacted CCD camera to replace contacted sensors.","PeriodicalId":6360,"journal":{"name":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","volume":"31 1","pages":"307-310"},"PeriodicalIF":0.0,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78403623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Hsieh, Chien-Chen Lee, Li Chiun Hung, V. Wang, Harry Perng
{"title":"Thermo-mechanical stress analysis and optimization for 28nm extreme low-k large die fcBGA","authors":"M. Hsieh, Chien-Chen Lee, Li Chiun Hung, V. Wang, Harry Perng","doi":"10.1109/IMPACT.2011.6117217","DOIUrl":"https://doi.org/10.1109/IMPACT.2011.6117217","url":null,"abstract":"The pre-solder crack phenomenon after thermal cycling test is observed in 28nm extreme low-k (ELK) large die fcBGA (flip chip ball grid array), which may come from the resulted critical stresses in IMC (intermetallic compounds) on Cu pad layer. For the purpose of realizing the thermal-mechanical stress distributions in 28nm ELK large die fcBGA, a comprehensive study for the effects of package geometry is investigated by using three-dimensional finite element analyses (FEA) in this paper. The effects of under bump metallurgy (UBM) size, solder resistant opening (SRO) size, solder bump dimension, thermal interface material (TIM) thickness, Cu pad diameter, substrate thickness and its coefficient of thermal expansion (CTE) are discussed by Taguchi L16(27) methodology to figure out the most significant factors. Through the statistical results, it is found that the factors of UBM size, SRO size and Cu pad diameter had significant contributions to stress responses. The most important parameters of UBM and SRO size ratio (UBM/SRO) as well as Cu pad diameter and SRO size ratio (pad/SRO) that comprehend the corresponding stress responses are captured by using response surface methodology (RSM). To have further discussions of these significant factors, dissections for UBM, SRO and polyimide (PI) opening size are also illustrated. The simulated results can be good references and effectively served as design guidelines to avoid the critical stresses as well as enhance the reliability in 28nm ELK large die fcBGA.","PeriodicalId":6360,"journal":{"name":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","volume":"108 1","pages":"411-414"},"PeriodicalIF":0.0,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80719671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Yuan, R. Kregting, H. Ye, W. V. van Driel, S. Gielen, G. Zhang
{"title":"High power electronics package: From modeling to implementation","authors":"C. Yuan, R. Kregting, H. Ye, W. V. van Driel, S. Gielen, G. Zhang","doi":"10.1109/IMPACT.2011.6117183","DOIUrl":"https://doi.org/10.1109/IMPACT.2011.6117183","url":null,"abstract":"Power electronics, such as high power RF components and high power LEDs, requires the combination of robust and reliable package structures, materials, and processes to guarantee their functional performance and lifetime. We started with the thermal and thermal-mechanical modeling of such component performances. With robust validation. Afterwards, an online testing method, design rules, and new structures/modifications have been implemented to improve the performance and reliability of high power electronics. This paper reviews our efforts on the RF transistors and high power LED's developments.","PeriodicalId":6360,"journal":{"name":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","volume":"446 1","pages":"249-252"},"PeriodicalIF":0.0,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78192675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermal characterization of a wide I/O 3DIC","authors":"Kuo-ying Tsai, Shih-chang Ku, W. Chang, H. Tsai","doi":"10.1109/IMPACT.2011.6117256","DOIUrl":"https://doi.org/10.1109/IMPACT.2011.6117256","url":null,"abstract":"The thermal performance of a specific 3D IC structure — a wide I/O package is investigated with parameterized factors like TSV diameter, material of micro bumps, and TSV allocation strategy. TSV diameter and material of micro bump are found no significant effect on thermal performance of the illustrated wide I/O package. However, the hot spot location is changed by the TSV allocation. The results suggest the better locations for thermal diodes would be close to the TSV or die corners. Also this work concludes that the “TSV peripheral” allocation performs the better cooling than the others.","PeriodicalId":6360,"journal":{"name":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","volume":"26 1","pages":"261-264"},"PeriodicalIF":0.0,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81051577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-speed electrical design study for 3D-IC packaging technology","authors":"R. Sung, K. Chiang, D. Lee, M. Ma","doi":"10.1109/IMPACT.2011.6117223","DOIUrl":"https://doi.org/10.1109/IMPACT.2011.6117223","url":null,"abstract":"As the advance of the packaging technology for the electrical consuming demands, it requires for more functions or increasing the density of devices within a smaller space. By the capabilities of the 3D-IC technology, it could support a design included smaller size, high-speed and multi-functions. One of the 3D-IC techs, the stacking with Through-Silicon-Via (TSV), plays a very important role. It shortens the path, and hence, increases the bandwidth of the device. In this study, we evaluate the TSV effects in usual high-speed electrical designs. There are two issues, the impedance-control and isolation. By using the EM simulation solver, we estimate the performances of different designed models about these two issues. And, this result should have the benefits for the development on the designs in the interposer substrates used for 3D-IC technology.","PeriodicalId":6360,"journal":{"name":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","volume":"59 1","pages":"144-146"},"PeriodicalIF":0.0,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80835594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}