{"title":"A novel multitask learning algorithm for tasks with distinct chemical space: zebrafish toxicity prediction as an example","authors":"Run-Hsin Lin, Pinpin Lin, Chia-Chi Wang, Chun-Wei Tung","doi":"10.1186/s13321-024-00891-4","DOIUrl":"10.1186/s13321-024-00891-4","url":null,"abstract":"<div><p>Data scarcity is one of the most critical issues impeding the development of prediction models for chemical effects. Multitask learning algorithms leveraging knowledge from relevant tasks showed potential for dealing with tasks with limited data. However, current multitask methods mainly focus on learning from datasets whose task labels are available for most of the training samples. Since datasets were generated for different purposes with distinct chemical spaces, the conventional multitask learning methods may not be suitable. This study presents a novel multitask learning method MTForestNet that can deal with data scarcity problems and learn from tasks with distinct chemical space. The MTForestNet consists of nodes of random forest classifiers organized in the form of a progressive network, where each node represents a random forest model learned from a specific task. To demonstrate the effectiveness of the MTForestNet, 48 zebrafish toxicity datasets were collected and utilized as an example. Among them, two tasks are very different from other tasks with only 1.3% common chemicals shared with other tasks. In an independent test, MTForestNet with a high area under the receiver operating characteristic curve (AUC) value of 0.911 provided superior performance over compared single-task and multitask methods. The overall toxicity derived from the developed models of zebrafish toxicity is well correlated with the experimentally determined overall toxicity. In addition, the outputs from the developed models of zebrafish toxicity can be utilized as features to boost the prediction of developmental toxicity. The developed models are effective for predicting zebrafish toxicity and the proposed MTForestNet is expected to be useful for tasks with distinct chemical space that can be applied in other tasks.</p><p><b>Scieific contribution</b></p><p>A novel multitask learning algorithm MTForestNet was proposed to address the challenges of developing models using datasets with distinct chemical space that is a common issue of cheminformatics tasks. As an example, zebrafish toxicity prediction models were developed using the proposed MTForestNet which provide superior performance over conventional single-task and multitask learning methods. In addition, the developed zebrafish toxicity prediction models can reduce animal testing.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00891-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Tan, Mingchen Li, Ziyi Zhou, Pan Tan, Huiqun Yu, Guisheng Fan, Liang Hong
{"title":"PETA: evaluating the impact of protein transfer learning with sub-word tokenization on downstream applications","authors":"Yang Tan, Mingchen Li, Ziyi Zhou, Pan Tan, Huiqun Yu, Guisheng Fan, Liang Hong","doi":"10.1186/s13321-024-00884-3","DOIUrl":"10.1186/s13321-024-00884-3","url":null,"abstract":"<p>Protein language models (PLMs) play a dominant role in protein representation learning. Most existing PLMs regard proteins as sequences of 20 natural amino acids. The problem with this representation method is that it simply divides the protein sequence into sequences of individual amino acids, ignoring the fact that certain residues often occur together. Therefore, it is inappropriate to view amino acids as isolated tokens. Instead, the PLMs should recognize the frequently occurring combinations of amino acids as a single token. In this study, we use the byte-pair-encoding algorithm and unigram to construct advanced residue vocabularies for protein sequence tokenization, and we have shown that PLMs pre-trained using these advanced vocabularies exhibit superior performance on downstream tasks when compared to those trained with simple vocabularies. Furthermore, we introduce PETA, a comprehensive benchmark for systematically evaluating PLMs. We find that vocabularies comprising 50 and 200 elements achieve optimal performance. Our code, model weights, and datasets are available at https://github.com/ginnm/ProteinPretraining. </p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00884-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Louis Plyer, Gilles Marcou, Céline Perves, Fanny Bonachera, Alexander Varnek
{"title":"Implementation of a soft grading system for chemistry in a Moodle plugin: reaction handling","authors":"Louis Plyer, Gilles Marcou, Céline Perves, Fanny Bonachera, Alexander Varnek","doi":"10.1186/s13321-024-00889-y","DOIUrl":"10.1186/s13321-024-00889-y","url":null,"abstract":"<div><p>Here, we present a new method for evaluating questions on chemical reactions in the context of remote education. This method can be used when binary grading is not sufficient as some tolerance may be acceptable. In order to determine a grade, the developed workflow uses the pairwise similarity assessment of two considered reactions, each encoded by a single molecular graph with the help of the Condensed Graph of Reaction (CGR) approach. This workflow is part of the ChemMoodle project and is implemented as a Moodle Plugin. It uses the Chemdoodle engine for reaction drawing and visualization and communicates with a REST server calculating the similarity score using ISIDA fragment descriptors. The plugin is open-source, accessible in GitHub (https://github.com/Laboratoire-de-Chemoinformatique/moodle-qtype_reacsimilarity) and on the Moodle plugin store (https://moodle.org/plugins/qtype_reacsimilarity?lang=en). Both similarity measures and fragmentation can be configured.</p><p><b>Scientific contribution</b></p><p> This work introduces an open-source method for evaluating chemical reaction questions within Moodle using the CGR approach. Our contribution provides a nuanced grading mechanism that accommodates acceptable tolerances in reaction assessments, enhancing the accuracy and flexibility of the grading process.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295431/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chengwei Zhang, Yushuang Zhai, Ziyang Gong, Hongliang Duan, Yuan-Bin She, Yun-Fang Yang, An Su
{"title":"Transfer learning across different chemical domains: virtual screening of organic materials with deep learning models pretrained on small molecule and chemical reaction data","authors":"Chengwei Zhang, Yushuang Zhai, Ziyang Gong, Hongliang Duan, Yuan-Bin She, Yun-Fang Yang, An Su","doi":"10.1186/s13321-024-00886-1","DOIUrl":"10.1186/s13321-024-00886-1","url":null,"abstract":"<div><p>Machine learning is becoming a preferred method for the virtual screening of organic materials due to its cost-effectiveness over traditional computationally demanding techniques. However, the scarcity of labeled data for organic materials poses a significant challenge for training advanced machine learning models. This study showcases the potential of utilizing databases of drug-like small molecules and chemical reactions to pretrain the BERT model, enhancing its performance in the virtual screening of organic materials. By fine-tuning the BERT models with data from five virtual screening tasks, the version pretrained with the USPTO–SMILES dataset achieved R<sup>2</sup> scores exceeding 0.94 for three tasks and over 0.81 for two others. This performance surpasses that of models pretrained on the small molecule or organic materials databases and outperforms three traditional machine learning models trained directly on virtual screening data. The success of the USPTO–SMILES pretrained BERT model can be attributed to the diverse array of organic building blocks in the USPTO database, offering a broader exploration of the chemical space. The study further suggests that accessing a reaction database with a wider range of reactions than the USPTO could further enhance model performance. Overall, this research validates the feasibility of applying transfer learning across different chemical domains for the efficient virtual screening of organic materials.</p><p><b>Scientific contribution</b></p><p>This study verifies the feasibility of applying transfer learning to large language models in different chemical fields to help organic materials perform virtual screening. Through the comparison of transfer learning from different chemical fields to a variety of organic material molecules, the high precision virtual screening of organic materials is realized.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290278/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141854476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gergely Zahoránszky-Kőhalmi, Kanny K. Wan, Alexander G. Godfrey
{"title":"Hilbert-curve assisted structure embedding method","authors":"Gergely Zahoránszky-Kőhalmi, Kanny K. Wan, Alexander G. Godfrey","doi":"10.1186/s13321-024-00850-z","DOIUrl":"10.1186/s13321-024-00850-z","url":null,"abstract":"<div><h3>Motivation</h3><p>Chemical space embedding methods are widely utilized in various research settings for dimensional reduction, clustering and effective visualization. The maps generated by the embedding process can provide valuable insight to medicinal chemists in terms of the relationships between structural, physicochemical and biological properties of compounds. However, these maps are known to be difficult to interpret, and the ‘‘landscape’’ on the map is prone to ‘‘rearrangement’’ when embedding different sets of compounds.</p><h3>Results</h3><p>In this study we present the Hilbert-Curve Assisted Space Embedding (HCASE) method which was designed to create maps by organizing structures according to a logic familiar to medicinal chemists. First, a chemical space is created with the help of a set of ‘‘reference scaffolds’’. These scaffolds are sorted according to the medicinal chemistry inspired Scaffold-Key algorithm found in prior art. Next, the ordered scaffolds are mapped to a line which is folded into a higher dimensional (here: 2D) space. The intricately folded line is referred to as a pseudo-Hilbert-Curve. The embedding of a compound happens by locating its most similar reference scaffold in the pseudo-Hilbert-Curve and assuming the respective position. Through a series of experiments, we demonstrate the properties of the maps generated by the HCASE method. Subjects of embeddings were compounds of the DrugBank and CANVASS libraries, and the chemical spaces were defined by scaffolds extracted from the ChEMBL database.</p><h3>Scientific contribution</h3><p>The novelty of HCASE method lies in generating robust and intuitive chemical space embeddings that are reflective of a medicinal chemist’s reasoning, and the precedential use of space filling (Hilbert) curve in the process.</p><h3>Availability</h3><p>https://github.com/ncats/hcase</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00850-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Niek F. de Jonge, Helge Hecht, Michael Strobel, Mingxun Wang, Justin J. J. van der Hooft, Florian Huber
{"title":"Reproducible MS/MS library cleaning pipeline in matchms","authors":"Niek F. de Jonge, Helge Hecht, Michael Strobel, Mingxun Wang, Justin J. J. van der Hooft, Florian Huber","doi":"10.1186/s13321-024-00878-1","DOIUrl":"10.1186/s13321-024-00878-1","url":null,"abstract":"<div><p>Mass spectral libraries have proven to be essential for mass spectrum annotation, both for library matching and training new machine learning algorithms. A key step in training machine learning models is the availability of high-quality training data. Public libraries of mass spectrometry data that are open to user submission often suffer from limited metadata curation and harmonization. The resulting variability in data quality makes training of machine learning models challenging. Here we present a library cleaning pipeline designed for cleaning tandem mass spectrometry library data. The pipeline is designed with ease of use, flexibility, and reproducibility as leading principles.</p><p><b>Scientific contribution</b></p><p>This pipeline will result in cleaner public mass spectral libraries that will improve library searching and the quality of machine-learning training datasets in mass spectrometry. This pipeline builds on previous work by adding new functionality for curating and correcting annotated libraries, by validating structure annotations. Due to the high quality of our software, the reproducibility, and improved logging, we think our new pipeline has the potential to become the standard in the field for cleaning tandem mass spectrometry libraries.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00878-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141790934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rayyan Tariq Khan, Petra Pokorna, Jan Stourac, Simeon Borko, Ihor Arefiev, Joan Planas-Iglesias, Adam Dobias, Gaspar Pinto, Veronika Szotkowska, Jaroslav Sterba, Ondrej Slaby, Jiri Damborsky, Stanislav Mazurenko, David Bednar
{"title":"A computational workflow for analysis of missense mutations in precision oncology","authors":"Rayyan Tariq Khan, Petra Pokorna, Jan Stourac, Simeon Borko, Ihor Arefiev, Joan Planas-Iglesias, Adam Dobias, Gaspar Pinto, Veronika Szotkowska, Jaroslav Sterba, Ondrej Slaby, Jiri Damborsky, Stanislav Mazurenko, David Bednar","doi":"10.1186/s13321-024-00876-3","DOIUrl":"10.1186/s13321-024-00876-3","url":null,"abstract":"<div><p>Every year, more than 19 million cancer cases are diagnosed, and this number continues to increase annually. Since standard treatment options have varying success rates for different types of cancer, understanding the biology of an individual's tumour becomes crucial, especially for cases that are difficult to treat. Personalised high-throughput profiling, using next-generation sequencing, allows for a comprehensive examination of biopsy specimens. Furthermore, the widespread use of this technology has generated a wealth of information on cancer-specific gene alterations. However, there exists a significant gap between identified alterations and their proven impact on protein function. Here, we present a bioinformatics pipeline that enables fast analysis of a missense mutation’s effect on stability and function in known oncogenic proteins. This pipeline is coupled with a predictor that summarises the outputs of different tools used throughout the pipeline, providing a single probability score, achieving a balanced accuracy above 86%. The pipeline incorporates a virtual screening method to suggest potential FDA/EMA-approved drugs to be considered for treatment. We showcase three case studies to demonstrate the timely utility of this pipeline. To facilitate access and analysis of cancer-related mutations, we have packaged the pipeline as a web server, which is freely available at https://loschmidt.chemi.muni.cz/predictonco/.</p><p><b>Scientific contribution</b></p><p>This work presents a novel bioinformatics pipeline that integrates multiple computational tools to predict the effects of missense mutations on proteins of oncological interest. The pipeline uniquely combines fast protein modelling, stability prediction, and evolutionary analysis with virtual drug screening, while offering actionable insights for precision oncology. This comprehensive approach surpasses existing tools by automating the interpretation of mutations and suggesting potential treatments, thereby striving to bridge the gap between sequencing data and clinical application.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00876-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141790935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CACTI: an in silico chemical analysis tool through the integration of chemogenomic data and clustering analysis","authors":"Karla P. Godinez-Macias, Elizabeth A. Winzeler","doi":"10.1186/s13321-024-00885-2","DOIUrl":"10.1186/s13321-024-00885-2","url":null,"abstract":"<div><p>It is well-accepted that knowledge of a small molecule’s target can accelerate optimization. Although chemogenomic databases are helpful resources for predicting or finding compound interaction partners, they tend to be limited and poorly annotated. Furthermore, unlike genes, compound identifiers are often not standardized, and many synonyms may exist, especially in the biological literature, making batch analysis of compounds difficult. Here, we constructed an open-source annotation and target hypothesis prediction tool that explores some of the largest chemical and biological databases, mining these for both common name, synonyms, and structurally similar molecules. We used this Chemical Analysis and Clustering for Target Identification (CACTI) tool to analyze the Pathogen Box collection, an open-source set of 400 drug-like compounds active against a variety of microbial pathogens. Our analysis resulted in 4,315 new synonyms, 35,963 pieces of new information and target prediction hints for 58 members.</p><p><b>Scientific contributions</b></p><p>With the employment of this tool, a comprehensive report with known evidence, close analogs and drug-target prediction can be obtained for large-scale chemical libraries that will facilitate their evaluation and future target validation and optimization efforts.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00885-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing molecular property prediction with auxiliary learning and task-specific adaptation","authors":"Vishal Dey, Xia Ning","doi":"10.1186/s13321-024-00880-7","DOIUrl":"10.1186/s13321-024-00880-7","url":null,"abstract":"<div><p>Pretrained Graph Neural Networks have been widely adopted for various molecular property prediction tasks. Despite their ability to encode structural and relational features of molecules, traditional fine-tuning of such pretrained GNNs on the target task can lead to poor generalization. To address this, we explore the adaptation of pretrained GNNs to the target task by jointly training them with multiple auxiliary tasks. This could enable the GNNs to learn both general and task-specific features, which may benefit the target task. However, a major challenge is to determine the relatedness of auxiliary tasks with the target task. To address this, we investigate multiple strategies to measure the relevance of auxiliary tasks and integrate such tasks by adaptively combining task gradients or by learning task weights via bi-level optimization. Additionally, we propose a novel gradient surgery-based approach, Rotation of Conflicting Gradients (<span>(mathop {texttt{RCGrad}}limits)</span>), that learns to align conflicting auxiliary task gradients through rotation. Our experiments with state-of-the-art pretrained GNNs demonstrate the efficacy of our proposed methods, with improvements of up to 7.7% over fine-tuning. This suggests that incorporating auxiliary tasks along with target task fine-tuning can be an effective way to improve the generalizability of pretrained GNNs for molecular property prediction.</p><p><b>Scientific contribution</b></p><p>We introduce a novel framework for adapting pretrained GNNs to molecular tasks using auxiliary learning to address the critical issue of negative transfer. Leveraging novel gradient surgery techniques such as <span>(mathop {texttt{RCGrad}}limits)</span>, the proposed adaptation framework represents a significant departure from the dominant pretraining fine-tuning approach for molecular GNNs. Our contributions are significant for drug discovery research, especially for tasks with limited data, filling a notable gap in the efficient adaptation of pretrained models for molecular GNNs.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00880-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estimating the synthetic accessibility of molecules with building block and reaction-aware SAScore","authors":"Shuan Chen, Yousung Jung","doi":"10.1186/s13321-024-00879-0","DOIUrl":"10.1186/s13321-024-00879-0","url":null,"abstract":"<div><p>Synthetic accessibility prediction is a task to estimate how easily a given molecule might be synthesizable in the laboratory, playing a crucial role in computer-aided molecular design. Although synthesis planning programs can determine synthesis routes, their slow processing times make them impractical for large-scale molecule screening. On the other hand, existing rapid synthesis accessibility estimation methods offer speed but typically lack integration with actual synthesis routes and building block information. In this work, we introduce BR-SAScore, an enhanced version of SAScore that integrates the available building block information (B) and reaction knowledge (R) from synthesis planning programs into the scoring process. In particular, we differentiate fragments inherent in building blocks and fragments to be derived from synthesis (reactions) when scoring synthetic accessibility. Compared to existing methods, our experimental findings demonstrate that BR-SAScore offers more accurate and precise identification of a molecule's synthetic accessibility by the synthesis planning program with a fast calculation time. Moreover, we illustrate how BR-SAScore provides chemically interpretable results, aligning with the capability of the synthesis planning program embedded with the same reaction knowledge and available building blocks.</p><p><b>Scientific contribution</b></p><p>We introduce BR-SAScore, an extension of SAScore, to estimate the synthetic accessibility of molecules by leveraging known building-block and reactivity information. In our experiments, BR-SAScore shows superior prediction performance on predicting molecule synthetic accessibility compared to previous methods, including SAScore and deep-learning models, while requiring significantly less computation time. In addition, we show that BR-SAScore is able to precisely identify the chemical fragment contributing to the synthetic infeasibility, holding great potential for future molecule synthesizability optimization.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267797/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141750803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}