在ADMET预测中对ML进行基准测试:基于配体的模型中特征表示的实际影响

IF 5.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Gintautas Kamuntavičius, Tanya Paquet, Orestis Bastas, Dainius Šalkauskas, Alvaro Prat, Hisham Abdel Aty, Aurimas Pabrinkis, Povilas Norvaišas, Roy Tal
{"title":"在ADMET预测中对ML进行基准测试:基于配体的模型中特征表示的实际影响","authors":"Gintautas Kamuntavičius,&nbsp;Tanya Paquet,&nbsp;Orestis Bastas,&nbsp;Dainius Šalkauskas,&nbsp;Alvaro Prat,&nbsp;Hisham Abdel Aty,&nbsp;Aurimas Pabrinkis,&nbsp;Povilas Norvaišas,&nbsp;Roy Tal","doi":"10.1186/s13321-025-01041-0","DOIUrl":null,"url":null,"abstract":"<div><p>This study, focusing on predicting Absorption, Distribution, Metabolism, Excretion, and Toxicology (ADMET) properties, addresses the key challenges of ML models trained using ligand-based representations. We propose a structured approach to data feature selection, taking a step beyond the conventional practice of combining different representations without systematic reasoning. Additionally, we enhance model evaluation methods by integrating cross-validation with statistical hypothesis testing, adding a layer of reliability to the model assessments. Our final evaluations include a practical scenario, where models trained on one source of data are evaluated on a different one. This approach aims to bolster the reliability of ADMET predictions, providing more dependable and informative model evaluations.</p><p><b>Scientific contribution</b></p><p>This study provided a structured approach to feature selection. We improve model evaluation by combining cross-validation with statistical hypothesis testing, making results more reliable. The methodology used in our study can be generalized beyond feature selection, boosting the confidence in selected models which is crucial in a noisy domain such as the ADMET prediction tasks. Additionally, we assess how well models trained on one dataset perform on another, offering practical insights for using external data in drug discovery.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01041-0","citationCount":"0","resultStr":"{\"title\":\"Benchmarking ML in ADMET predictions: the practical impact of feature representations in ligand-based models\",\"authors\":\"Gintautas Kamuntavičius,&nbsp;Tanya Paquet,&nbsp;Orestis Bastas,&nbsp;Dainius Šalkauskas,&nbsp;Alvaro Prat,&nbsp;Hisham Abdel Aty,&nbsp;Aurimas Pabrinkis,&nbsp;Povilas Norvaišas,&nbsp;Roy Tal\",\"doi\":\"10.1186/s13321-025-01041-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study, focusing on predicting Absorption, Distribution, Metabolism, Excretion, and Toxicology (ADMET) properties, addresses the key challenges of ML models trained using ligand-based representations. We propose a structured approach to data feature selection, taking a step beyond the conventional practice of combining different representations without systematic reasoning. Additionally, we enhance model evaluation methods by integrating cross-validation with statistical hypothesis testing, adding a layer of reliability to the model assessments. Our final evaluations include a practical scenario, where models trained on one source of data are evaluated on a different one. This approach aims to bolster the reliability of ADMET predictions, providing more dependable and informative model evaluations.</p><p><b>Scientific contribution</b></p><p>This study provided a structured approach to feature selection. We improve model evaluation by combining cross-validation with statistical hypothesis testing, making results more reliable. The methodology used in our study can be generalized beyond feature selection, boosting the confidence in selected models which is crucial in a noisy domain such as the ADMET prediction tasks. Additionally, we assess how well models trained on one dataset perform on another, offering practical insights for using external data in drug discovery.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01041-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-01041-0\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01041-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是预测吸收、分布、代谢、排泄和毒理学(ADMET)特性,解决了使用基于配体的表示训练的ML模型的关键挑战。我们提出了一种结构化的数据特征选择方法,超越了在没有系统推理的情况下组合不同表示的传统做法。此外,我们通过将交叉验证与统计假设检验相结合,增强了模型评估方法,为模型评估增加了一层可靠性。我们的最终评估包括一个实际场景,其中在一个数据源上训练的模型在另一个数据源上进行评估。这种方法旨在提高ADMET预测的可靠性,提供更可靠和信息丰富的模型评估。本研究提供了一种结构化的特征选择方法。我们将交叉验证与统计假设检验相结合,改进模型评价,使结果更加可靠。我们研究中使用的方法可以推广到特征选择之外,提高了所选模型的置信度,这在噪声领域(如ADMET预测任务)中至关重要。此外,我们评估了在一个数据集上训练的模型在另一个数据集上的表现,为在药物发现中使用外部数据提供了实际的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benchmarking ML in ADMET predictions: the practical impact of feature representations in ligand-based models

This study, focusing on predicting Absorption, Distribution, Metabolism, Excretion, and Toxicology (ADMET) properties, addresses the key challenges of ML models trained using ligand-based representations. We propose a structured approach to data feature selection, taking a step beyond the conventional practice of combining different representations without systematic reasoning. Additionally, we enhance model evaluation methods by integrating cross-validation with statistical hypothesis testing, adding a layer of reliability to the model assessments. Our final evaluations include a practical scenario, where models trained on one source of data are evaluated on a different one. This approach aims to bolster the reliability of ADMET predictions, providing more dependable and informative model evaluations.

Scientific contribution

This study provided a structured approach to feature selection. We improve model evaluation by combining cross-validation with statistical hypothesis testing, making results more reliable. The methodology used in our study can be generalized beyond feature selection, boosting the confidence in selected models which is crucial in a noisy domain such as the ADMET prediction tasks. Additionally, we assess how well models trained on one dataset perform on another, offering practical insights for using external data in drug discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信