Seeun Kim, Simaek Oh, Hyeonuk Woo, Jiho Sim, Chaok Seok, Hahnbeom Park
{"title":"仅从受体结构中深度学习分子相互作用基序","authors":"Seeun Kim, Simaek Oh, Hyeonuk Woo, Jiho Sim, Chaok Seok, Hahnbeom Park","doi":"10.1186/s13321-025-01055-8","DOIUrl":null,"url":null,"abstract":"<div><p>Interactions of proteins with other molecules are often mediated by a set of critical binding motifs on their surfaces. Most traditional binder designs relied on motifs borrowed from known binder molecules, which highly restricted their applicability to novel targets or new binding sites. This work presents a deep learning network MotifGen that predicts potential binder motifs directly from receptor structures without further supporting information. MotifGen generates motif profiles at the receptor surface for 14 types of functional groups or 6 chemical interaction classes. These profiles are highly human-interpretable and can be further utilized as pre-trained embedding inputs for versatile few-shot binder design applications. We demonstrate MotifGen's effectiveness through its applications to peptide binder design and small molecule binding site prediction, where it either surpassed existing methods or added significant value when integrated. Our motif-centric approach can offer a new design strategy for novel binder discovery for challenging receptor targets.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01055-8","citationCount":"0","resultStr":"{\"title\":\"Deep learning molecular interaction motifs from receptor structures alone\",\"authors\":\"Seeun Kim, Simaek Oh, Hyeonuk Woo, Jiho Sim, Chaok Seok, Hahnbeom Park\",\"doi\":\"10.1186/s13321-025-01055-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Interactions of proteins with other molecules are often mediated by a set of critical binding motifs on their surfaces. Most traditional binder designs relied on motifs borrowed from known binder molecules, which highly restricted their applicability to novel targets or new binding sites. This work presents a deep learning network MotifGen that predicts potential binder motifs directly from receptor structures without further supporting information. MotifGen generates motif profiles at the receptor surface for 14 types of functional groups or 6 chemical interaction classes. These profiles are highly human-interpretable and can be further utilized as pre-trained embedding inputs for versatile few-shot binder design applications. We demonstrate MotifGen's effectiveness through its applications to peptide binder design and small molecule binding site prediction, where it either surpassed existing methods or added significant value when integrated. Our motif-centric approach can offer a new design strategy for novel binder discovery for challenging receptor targets.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01055-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-01055-8\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01055-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Deep learning molecular interaction motifs from receptor structures alone
Interactions of proteins with other molecules are often mediated by a set of critical binding motifs on their surfaces. Most traditional binder designs relied on motifs borrowed from known binder molecules, which highly restricted their applicability to novel targets or new binding sites. This work presents a deep learning network MotifGen that predicts potential binder motifs directly from receptor structures without further supporting information. MotifGen generates motif profiles at the receptor surface for 14 types of functional groups or 6 chemical interaction classes. These profiles are highly human-interpretable and can be further utilized as pre-trained embedding inputs for versatile few-shot binder design applications. We demonstrate MotifGen's effectiveness through its applications to peptide binder design and small molecule binding site prediction, where it either surpassed existing methods or added significant value when integrated. Our motif-centric approach can offer a new design strategy for novel binder discovery for challenging receptor targets.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.