Deep learning molecular interaction motifs from receptor structures alone

IF 5.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Seeun Kim, Simaek Oh, Hyeonuk Woo, Jiho Sim, Chaok Seok, Hahnbeom Park
{"title":"Deep learning molecular interaction motifs from receptor structures alone","authors":"Seeun Kim,&nbsp;Simaek Oh,&nbsp;Hyeonuk Woo,&nbsp;Jiho Sim,&nbsp;Chaok Seok,&nbsp;Hahnbeom Park","doi":"10.1186/s13321-025-01055-8","DOIUrl":null,"url":null,"abstract":"<div><p>Interactions of proteins with other molecules are often mediated by a set of critical binding motifs on their surfaces. Most traditional binder designs relied on motifs borrowed from known binder molecules, which highly restricted their applicability to novel targets or new binding sites. This work presents a deep learning network MotifGen that predicts potential binder motifs directly from receptor structures without further supporting information. MotifGen generates motif profiles at the receptor surface for 14 types of functional groups or 6 chemical interaction classes. These profiles are highly human-interpretable and can be further utilized as pre-trained embedding inputs for versatile few-shot binder design applications. We demonstrate MotifGen's effectiveness through its applications to peptide binder design and small molecule binding site prediction, where it either surpassed existing methods or added significant value when integrated. Our motif-centric approach can offer a new design strategy for novel binder discovery for challenging receptor targets.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01055-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01055-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Interactions of proteins with other molecules are often mediated by a set of critical binding motifs on their surfaces. Most traditional binder designs relied on motifs borrowed from known binder molecules, which highly restricted their applicability to novel targets or new binding sites. This work presents a deep learning network MotifGen that predicts potential binder motifs directly from receptor structures without further supporting information. MotifGen generates motif profiles at the receptor surface for 14 types of functional groups or 6 chemical interaction classes. These profiles are highly human-interpretable and can be further utilized as pre-trained embedding inputs for versatile few-shot binder design applications. We demonstrate MotifGen's effectiveness through its applications to peptide binder design and small molecule binding site prediction, where it either surpassed existing methods or added significant value when integrated. Our motif-centric approach can offer a new design strategy for novel binder discovery for challenging receptor targets.

仅从受体结构中深度学习分子相互作用基序
蛋白质与其他分子的相互作用通常是由其表面上的一组关键结合基序介导的。大多数传统的结合剂设计依赖于从已知结合剂分子中借来的基序,这极大地限制了它们对新靶点或新结合位点的适用性。这项工作提出了一个深度学习网络MotifGen,可以直接从受体结构中预测潜在的粘合基序,而无需进一步的支持信息。MotifGen在受体表面生成14种官能团或6种化学相互作用类的基序谱。这些配置文件具有高度的可解释性,并且可以进一步用作通用的少量粘结剂设计应用程序的预训练嵌入输入。我们通过其在肽结合剂设计和小分子结合位点预测方面的应用证明了MotifGen的有效性,在这些方面,它要么超越了现有的方法,要么在集成后增加了显著的价值。我们以基序为中心的方法可以为具有挑战性的受体靶点的新粘合剂发现提供新的设计策略。我们引入了一种新的基于深度学习的计算策略来识别给定受体结构的潜在结合基序。这些预测的结合基序可以直接应用于各种药物类型的设计,包括肽和小分子。为了证明它的实用性,我们展示了它在肽结合物序列识别和结合位点预测任务中的应用,这两个任务都是基于结构的药物设计中的关键任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信