Journal of Cheminformatics最新文献

筛选
英文 中文
A comprehensive comparison of deep learning-based compound-target interaction prediction models to unveil guiding design principles 全面比较基于深度学习的化合物-目标相互作用预测模型,揭示指导性设计原则。
IF 7.1 2区 化学
Journal of Cheminformatics Pub Date : 2024-10-28 DOI: 10.1186/s13321-024-00913-1
Sina Abdollahi, Darius P. Schaub, Madalena Barroso, Nora C. Laubach, Wiebke Hutwelker, Ulf Panzer, S.øren W. Gersting, Stefan Bonn
{"title":"A comprehensive comparison of deep learning-based compound-target interaction prediction models to unveil guiding design principles","authors":"Sina Abdollahi,&nbsp;Darius P. Schaub,&nbsp;Madalena Barroso,&nbsp;Nora C. Laubach,&nbsp;Wiebke Hutwelker,&nbsp;Ulf Panzer,&nbsp;S.øren W. Gersting,&nbsp;Stefan Bonn","doi":"10.1186/s13321-024-00913-1","DOIUrl":"10.1186/s13321-024-00913-1","url":null,"abstract":"<div><p>The evaluation of compound-target interactions (CTIs) is at the heart of drug discovery efforts. Given the substantial time and monetary costs of classical experimental screening, significant efforts have been dedicated to develop deep learning-based models that can accurately predict CTIs. A comprehensive comparison of these models on a large, curated CTI dataset is, however, still lacking. Here, we perform an in-depth comparison of 12 state-of-the-art deep learning architectures that use different protein and compound representations. The models were selected for their reported performance and architectures. To reliably compare model performance, we curated over 300 thousand binding and non-binding CTIs and established several gold-standard datasets of varying size and information. Based on our findings, DeepConv-DTI consistently outperforms other models in CTI prediction performance across the majority of datasets. It achieves an MCC of 0.6 or higher for most of the datasets and is one of the fastest models in training and inference. These results indicate that utilizing convolutional-based windows as in DeepConv-DTI to traverse trainable embeddings is a highly effective approach for capturing informative protein features. We also observed that physicochemical embeddings of targets increased model performance. We therefore modified DeepConv-DTI to include normalized physicochemical properties, which resulted in the overall best performing model Phys-DeepConv-DTI. This work highlights how the systematic evaluation of input features of compounds and targets, as well as their corresponding neural network architectures, can serve as a roadmap for the future development of improved CTI models.</p><p><b>Scientific contribution</b></p><p>This work features comprehensive CTI datasets to allow for the objective comparison and benchmarking of CTI prediction algorithms. Based on this dataset, we gained insights into which embeddings of compounds and targets and which deep learning-based algorithms perform best, providing a blueprint for the future development of CTI algorithms. Using the insights gained from this screen, we provide a novel CTI algorithm with state-of-the-art performance.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00913-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards the prediction of drug solubility in binary solvent mixtures at various temperatures using machine learning 利用机器学习预测不同温度下药物在二元溶剂混合物中的溶解度
IF 7.1 2区 化学
Journal of Cheminformatics Pub Date : 2024-10-28 DOI: 10.1186/s13321-024-00911-3
Zeqing Bao, Gary Tom, Austin Cheng, Jeffrey Watchorn, Alán Aspuru-Guzik, Christine Allen
{"title":"Towards the prediction of drug solubility in binary solvent mixtures at various temperatures using machine learning","authors":"Zeqing Bao,&nbsp;Gary Tom,&nbsp;Austin Cheng,&nbsp;Jeffrey Watchorn,&nbsp;Alán Aspuru-Guzik,&nbsp;Christine Allen","doi":"10.1186/s13321-024-00911-3","DOIUrl":"10.1186/s13321-024-00911-3","url":null,"abstract":"<p>Drug solubility is an important parameter in the drug development process, yet it is often tedious and challenging to measure, especially for expensive drugs or those available in small quantities. To alleviate these challenges, machine learning (ML) has been applied to predict drug solubility as an alternative approach. However, the majority of existing ML research has focused on the predictions of aqueous solubility and/or solubility at specific temperatures, which restricts the model applicability in pharmaceutical development. To bridge this gap, we compiled a dataset of 27,000 solubility datapoints, including solubility of small molecules measured in a range of binary solvent mixtures under various temperatures. Next, a panel of ML models were trained on this dataset with their hyperparameters tuned using Bayesian optimization. The resulting top-performing models, both gradient boosted decision trees (light gradient boosting machine and extreme gradient boosting), achieved mean absolute errors (MAE) of 0.33 for LogS (S in g/100 g) on the holdout set. These models were further validated through a prospective study, wherein the solubility of four drug molecules were predicted by the models and then validated with in-house solubility experiments. This prospective study demonstrated that the models accurately predicted the solubility of solutes in specific binary solvent mixtures under different temperatures, especially for drugs whose features closely align within the solutes in the dataset (MAE &lt; 0.5 for LogS). To support future research and facilitate advancements in the field, we have made the dataset and code openly available.</p><p><b>Scientific contribution</b></p><p>Our research advances the state-of-the-art in predicting solubility for small molecules by leveraging ML and a uniquely comprehensive dataset. Unlike existing ML studies that predominantly focus on solubility in aqueous solvents at fixed temperatures, our work enables prediction of drug solubility in a variety of binary solvent mixtures over a broad temperature range, providing practical insights on the modeling of solubility for realistic pharmaceutical applications. These advancements along with the open access dataset and code support significant steps in the drug development process including new molecule discovery, drug analysis and formulation.</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00911-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graph neural processes for molecules: an evaluation on docking scores and strategies to improve generalization 分子的图神经过程:对接得分评估和提高通用性的策略
IF 7.1 2区 化学
Journal of Cheminformatics Pub Date : 2024-10-23 DOI: 10.1186/s13321-024-00904-2
Miguel García-Ortegón, Srijit Seal, Carl Rasmussen, Andreas Bender, Sergio Bacallado
{"title":"Graph neural processes for molecules: an evaluation on docking scores and strategies to improve generalization","authors":"Miguel García-Ortegón,&nbsp;Srijit Seal,&nbsp;Carl Rasmussen,&nbsp;Andreas Bender,&nbsp;Sergio Bacallado","doi":"10.1186/s13321-024-00904-2","DOIUrl":"10.1186/s13321-024-00904-2","url":null,"abstract":"<p>Neural processes (NPs) are models for meta-learning which output uncertainty estimates. So far, most studies of NPs have focused on low-dimensional datasets of highly-correlated tasks. While these homogeneous datasets are useful for benchmarking, they may not be representative of realistic transfer learning. In particular, applications in scientific research may prove especially challenging due to the potential novelty of meta-testing tasks. Molecular property prediction is one such research area that is characterized by sparse datasets of many functions on a shared molecular space. In this paper, we study the application of graph NPs to molecular property prediction with DOCKSTRING, a diverse dataset of docking scores. Graph NPs show competitive performance in few-shot learning tasks relative to supervised learning baselines common in chemoinformatics, as well as alternative techniques for transfer learning and meta-learning. In order to increase meta-generalization to divergent test functions, we propose fine-tuning strategies that adapt the parameters of NPs. We find that adaptation can substantially increase NPs' regression performance while maintaining good calibration of uncertainty estimates. Finally, we present a Bayesian optimization experiment which showcases the potential advantages of NPs over Gaussian processes in iterative screening. Overall, our results suggest that NPs on molecular graphs hold great potential for molecular property prediction in the low-data setting.</p><p>Neural processes are a family of meta-learning algorithms which deal with data scarcity by transferring information across tasks and making probabilistic predictions. We evaluate their performance on regression and optimization molecular tasks using docking scores, finding them to outperform classical single-task and transfer-learning models. We examine the issue of generalization to divergent test tasks, which is a general concern of meta-learning algorithms in science, and propose strategies to alleviate it.</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00904-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MEF-AlloSite: an accurate and robust Multimodel Ensemble Feature selection for the Allosteric Site identification model MEF-AlloSite:针对异位基因位点识别模型的精确、稳健的多模型集合特征选择
IF 7.1 2区 化学
Journal of Cheminformatics Pub Date : 2024-10-23 DOI: 10.1186/s13321-024-00882-5
Sadettin Y. Ugurlu, David McDonald, Shan He
{"title":"MEF-AlloSite: an accurate and robust Multimodel Ensemble Feature selection for the Allosteric Site identification model","authors":"Sadettin Y. Ugurlu,&nbsp;David McDonald,&nbsp;Shan He","doi":"10.1186/s13321-024-00882-5","DOIUrl":"10.1186/s13321-024-00882-5","url":null,"abstract":"<div><p>A crucial mechanism for controlling the actions of proteins is allostery. Allosteric modulators have the potential to provide many benefits compared to orthosteric ligands, such as increased selectivity and saturability of their effect. The identification of new allosteric sites presents prospects for the creation of innovative medications and enhances our comprehension of fundamental biological mechanisms. Allosteric sites are increasingly found in different protein families through various techniques, such as machine learning applications, which opens up possibilities for creating completely novel medications with a diverse variety of chemical structures. Machine learning methods, such as PASSer, exhibit limited efficacy in accurately finding allosteric binding sites when relying solely on 3D structural information.</p><p><b>Scientific Contribution</b></p><p>Prior to conducting feature selection for allosteric binding site identification, integration of supporting amino-acid–based information to 3D structural knowledge is advantageous. This approach can enhance performance by ensuring accuracy and robustness. Therefore, we have developed an accurate and robust model called Multimodel Ensemble Feature Selection for Allosteric Site Identification (MEF-AlloSite) after collecting 9460 relevant and diverse features from the literature to characterise pockets. The model employs an accurate and robust multimodal feature selection technique for the small training set size of only 90 proteins to improve predictive performance. This state-of-the-art technique increased the performance in allosteric binding site identification by selecting promising features from 9460 features. Also, the relationship between selected features and allosteric binding sites enlightened the understanding of complex allostery for proteins by analysing selected features. MEF-AlloSite and state-of-the-art allosteric site identification methods such as PASSer2.0 and PASSerRank have been tested on three test cases 51 times with a different split of the training set. The Student’s t test and Cohen’s D value have been used to evaluate the average precision and ROC AUC score distribution. On three test cases, most of the p-values (<span>(&lt; 0.05)</span>) and the majority of Cohen’s D values (<span>(&gt; 0.5)</span>) showed that MEF-AlloSite’s 1–6% higher mean of average precision and ROC AUC than state-of-the-art allosteric site identification methods are statistically significant.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00882-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large-scale annotation of biochemically relevant pockets and tunnels in cognate enzyme–ligand complexes 大规模注释同源酶配体中的生化相关口袋和隧道
IF 7.1 2区 化学
Journal of Cheminformatics Pub Date : 2024-10-15 DOI: 10.1186/s13321-024-00907-z
O. Vavra, J. Tyzack, F. Haddadi, J. Stourac, J. Damborsky, S. Mazurenko, J. M. Thornton, D. Bednar
{"title":"Large-scale annotation of biochemically relevant pockets and tunnels in cognate enzyme–ligand complexes","authors":"O. Vavra,&nbsp;J. Tyzack,&nbsp;F. Haddadi,&nbsp;J. Stourac,&nbsp;J. Damborsky,&nbsp;S. Mazurenko,&nbsp;J. M. Thornton,&nbsp;D. Bednar","doi":"10.1186/s13321-024-00907-z","DOIUrl":"10.1186/s13321-024-00907-z","url":null,"abstract":"<div><p>Tunnels in enzymes with buried active sites are key structural features allowing the entry of substrates and the release of products, thus contributing to the catalytic efficiency. Targeting the bottlenecks of protein tunnels is also a powerful protein engineering strategy. However, the identification of functional tunnels in multiple protein structures is a non-trivial task that can only be addressed computationally. We present a pipeline integrating automated structural analysis with an <i>in-house</i> machine-learning predictor for the annotation of protein pockets, followed by the calculation of the energetics of ligand transport via biochemically relevant tunnels. A thorough validation using eight distinct molecular systems revealed that CaverDock analysis of ligand un/binding is on par with time-consuming molecular dynamics simulations, but much faster. The optimized and validated pipeline was applied to annotate more than 17,000 cognate enzyme–ligand complexes. Analysis of ligand un/binding energetics indicates that the top priority tunnel has the most favourable energies in 75% of cases. Moreover, energy profiles of cognate ligands revealed that a simple geometry analysis can correctly identify tunnel bottlenecks only in 50% of cases. Our study provides essential information for the interpretation of results from tunnel calculation and energy profiling in mechanistic enzymology and protein engineering. We formulated several simple rules allowing identification of biochemically relevant tunnels based on the binding pockets, tunnel geometry, and ligand transport energy profiles.</p><p><b>Scientific contributions</b></p><p>The pipeline introduced in this work allows for the detailed analysis of a large set of protein–ligand complexes, focusing on transport pathways. We are introducing a novel predictor for determining the relevance of binding pockets for tunnel calculation. For the first time in the field, we present a high-throughput energetic analysis of ligand binding and unbinding, showing that approximate methods for these simulations can identify additional mutagenesis hotspots in enzymes compared to purely geometrical methods. The predictor is included in the supplementary material and can also be accessed at https://github.com/Faranehhad/Large-Scale-Pocket-Tunnel-Annotation.git. The tunnel data calculated in this study has been made publicly available as part of the ChannelsDB 2.0 database, accessible at https://channelsdb2.biodata.ceitec.cz/.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00907-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bitter peptide prediction using graph neural networks 利用图神经网络预测苦味肽
IF 7.1 2区 化学
Journal of Cheminformatics Pub Date : 2024-10-07 DOI: 10.1186/s13321-024-00909-x
Prashant Srivastava, Alexandra Steuer, Francesco Ferri, Alessandro Nicoli, Kristian Schultz, Saptarshi Bej, Antonella Di Pizio, Olaf Wolkenhauer
{"title":"Bitter peptide prediction using graph neural networks","authors":"Prashant Srivastava,&nbsp;Alexandra Steuer,&nbsp;Francesco Ferri,&nbsp;Alessandro Nicoli,&nbsp;Kristian Schultz,&nbsp;Saptarshi Bej,&nbsp;Antonella Di Pizio,&nbsp;Olaf Wolkenhauer","doi":"10.1186/s13321-024-00909-x","DOIUrl":"10.1186/s13321-024-00909-x","url":null,"abstract":"<div><p>Bitter taste is an unpleasant taste modality that affects food consumption. Bitter peptides are generated during enzymatic processes that produce functional, bioactive protein hydrolysates or during the aging process of fermented products such as cheese, soybean protein, and wine. Understanding the underlying peptide sequences responsible for bitter taste can pave the way for more efficient identification of these peptides. This paper presents BitterPep-GCN, a feature-agnostic graph convolution network for bitter peptide prediction. The graph-based model learns the embedding of amino acids in the bitter peptide sequences and uses mixed pooling for bitter classification. BitterPep-GCN was benchmarked using BTP640, a publicly available bitter peptide dataset. The latent peptide embeddings generated by the trained model were used to analyze the activity of sequence motifs responsible for the bitter taste of the peptides. Particularly, we calculated the activity for individual amino acids and dipeptide, tripeptide, and tetrapeptide sequence motifs present in the peptides. Our analyses pinpoint specific amino acids, such as F, G, P, and R, as well as sequence motifs, notably tripeptide and tetrapeptide motifs containing FF, as key bitter signatures in peptides. This work not only provides a new predictor of bitter taste for a more efficient identification of bitter peptides in various food products but also gives a hint into the molecular basis of bitterness.</p><p><b>Scientific Contribution</b></p><p>Our work provides the first application of Graph Neural Networks for the prediction of peptide bitter taste. The best-developed model, BitterPep-GCN, learns the embedding of amino acids in the bitter peptide sequences and uses mixed pooling for bitter classification. The embeddings were used to analyze the sequence motifs responsible for the bitter taste.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00909-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data mining of PubChem bioassay records reveals diverse OXPHOS inhibitory chemotypes as potential therapeutic agents against ovarian cancer 对 PubChem 生物测定记录的数据挖掘揭示了作为卵巢癌潜在治疗药物的多种 OXPHOS 抑制性化学类型
IF 7.1 2区 化学
Journal of Cheminformatics Pub Date : 2024-10-07 DOI: 10.1186/s13321-024-00906-0
Sejal Sharma, Liping Feng, Nicha Boonpattrawong, Arvinder Kapur, Lisa Barroilhet, Manish S. Patankar, Spencer S. Ericksen
{"title":"Data mining of PubChem bioassay records reveals diverse OXPHOS inhibitory chemotypes as potential therapeutic agents against ovarian cancer","authors":"Sejal Sharma,&nbsp;Liping Feng,&nbsp;Nicha Boonpattrawong,&nbsp;Arvinder Kapur,&nbsp;Lisa Barroilhet,&nbsp;Manish S. Patankar,&nbsp;Spencer S. Ericksen","doi":"10.1186/s13321-024-00906-0","DOIUrl":"10.1186/s13321-024-00906-0","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Focused screening on target-prioritized compound sets can be an efficient alternative to high throughput screening (HTS). For most biomolecular targets, compound prioritization models depend on prior screening data or a target structure. For phenotypic or multi-protein pathway targets, it may not be clear which public assay records provide relevant data. The question also arises as to whether data collected from disparate assays might be usefully consolidated. Here, we report on the development and application of a data mining pipeline to examine these issues. To illustrate, we focus on identifying inhibitors of oxidative phosphorylation, a druggable metabolic process in epithelial ovarian tumors. The pipeline compiled 8415 available OXPHOS-related bioassays in the PubChem data repository involving 312,093 unique compound records. Application of PubChem assay activity annotations, PAINS (Pan Assay Interference Compounds), and Lipinski-like bioavailability filters yields 1852 putative OXPHOS-active compounds that fall into 464 clusters. These chemotypes are diverse but have relatively high hydrophobicity and molecular weight but lower complexity and drug-likeness. These chemotypes show a high abundance of bicyclic ring systems and oxygen containing functional groups including ketones, allylic oxides (alpha/beta unsaturated carbonyls), hydroxyl groups, and ethers. In contrast, amide and primary amine functional groups have a notably lower than random prevalence. UMAP representation of the chemical space shows strong divergence in the regions occupied by OXPHOS-inactive and -active compounds. Of the six compounds selected for biological testing, 4 showed statistically significant inhibition of electron transport in bioenergetics assays. Two of these four compounds, lacidipine and esbiothrin, increased in intracellular oxygen radicals (a major hallmark of most OXPHOS inhibitors) and decreased the viability of two ovarian cancer cell lines, ID8 and OVCAR5. Finally, data from the pipeline were used to train random forest and support vector classifiers that effectively prioritized OXPHOS inhibitory compounds within a held-out test set (ROCAUC 0.962 and 0.927, respectively) and on another set containing 44 documented OXPHOS inhibitors outside of the training set (ROCAUC 0.900 and 0.823). This prototype pipeline is extensible and could be adapted for focus screening on other phenotypic targets for which sufficient public data are available.&lt;/p&gt;&lt;p&gt;&lt;b&gt;Scientific contribution&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Here, we describe and apply an assay data mining pipeline to compile, process, filter, and mine public bioassay data. We believe the procedure may be more broadly applied to guide compound selection in early-stage hit finding on novel multi-protein mechanistic or phenotypic targets. To demonstrate the utility of our approach, we apply a data mining strategy on a large set of public assay data to find drug-like molecules that inhibit oxidative phosphorylation (OXPHOS) a","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00906-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into predicting small molecule retention times in liquid chromatography using deep learning 利用深度学习预测液相色谱中的小分子保留时间的启示
IF 7.1 2区 化学
Journal of Cheminformatics Pub Date : 2024-10-07 DOI: 10.1186/s13321-024-00905-1
Yuting Liu, Akiyasu C. Yoshizawa, Yiwei Ling, Shujiro Okuda
{"title":"Insights into predicting small molecule retention times in liquid chromatography using deep learning","authors":"Yuting Liu,&nbsp;Akiyasu C. Yoshizawa,&nbsp;Yiwei Ling,&nbsp;Shujiro Okuda","doi":"10.1186/s13321-024-00905-1","DOIUrl":"10.1186/s13321-024-00905-1","url":null,"abstract":"<p>In untargeted metabolomics, structures of small molecules are annotated using liquid chromatography-mass spectrometry by leveraging information from the molecular retention time (RT) in the chromatogram and <i>m/z</i> (formerly called ''mass-to-charge ratio'') in the mass spectrum. However, correct identification of metabolites is challenging due to the vast array of small molecules. Therefore, various in silico tools for mass spectrometry peak alignment and compound prediction have been developed; however, the list of candidate compounds remains extensive. Accurate RT prediction is important to exclude false candidates and facilitate metabolite annotation. Recent advancements in artificial intelligence (AI) have led to significant breakthroughs in the use of deep learning models in various fields. Release of a large RT dataset has mitigated the bottlenecks limiting the application of deep learning models, thereby improving their application in RT prediction tasks. This review lists the databases that can be used to expand training datasets and concerns the issue about molecular representation inconsistencies in datasets. It also discusses the application of AI technology for RT prediction, particularly in the 5 years following the release of the METLIN small molecule RT dataset. This review provides a comprehensive overview of the AI applications used for RT prediction, highlighting the progress and remaining challenges.</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00905-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combining graph neural networks and transformers for few-shot nuclear receptor binding activity prediction 结合图神经网络和转换器预测核受体结合活性
IF 7.1 2区 化学
Journal of Cheminformatics Pub Date : 2024-09-27 DOI: 10.1186/s13321-024-00902-4
Luis H. M. Torres, Joel P. Arrais, Bernardete Ribeiro
{"title":"Combining graph neural networks and transformers for few-shot nuclear receptor binding activity prediction","authors":"Luis H. M. Torres,&nbsp;Joel P. Arrais,&nbsp;Bernardete Ribeiro","doi":"10.1186/s13321-024-00902-4","DOIUrl":"10.1186/s13321-024-00902-4","url":null,"abstract":"<div><p>Nuclear receptors (NRs) play a crucial role as biological targets in drug discovery. However, determining which compounds can act as endocrine disruptors and modulate the function of NRs with a reduced amount of candidate drugs is a challenging task. Moreover, the computational methods for NR-binding activity prediction mostly focus on a single receptor at a time, which may limit their effectiveness. Hence, the transfer of learned knowledge among multiple NRs can improve the performance of molecular predictors and lead to the development of more effective drugs. In this research, we integrate graph neural networks (GNNs) and Transformers to introduce a few-shot GNN-Transformer, Meta-GTNRP to predict the binding activity of compounds using the combined information of different NRs and identify potential NR-modulators with limited data. The Meta-GTNRP model captures the local information in graph-structured data and preserves the global-semantic structure of molecular graph embeddings for NR-binding activity prediction. Furthermore, a few-shot meta-learning approach is proposed to optimize model parameters for different NR-binding tasks and leverage the complementarity among multiple NR-specific tasks to predict binding activity of compounds for each NR with just a few labeled molecules. Experiments with a compound database containing annotations on the binding activity for 11 NRs shows that Meta-GTNRP outperforms other graph-based approaches. The data and code are available at: https://github.com/ltorres97/Meta-GTNRP.</p><p><b>Scientific contribution</b></p><p>The proposed few-shot GNN-Transformer model, Meta-GTNRP captures the local structure of molecular graphs and preserves the global-semantic information of graph embeddings to predict the NR-binding activity of compounds with limited available data; A few-shot meta-learning framework adapts model parameters across NR-specific tasks for different NRs in a joint learning procedure to predict the binding activity of compounds for each NR with just a few labeled molecules in highly imbalanced data scenarios; Meta-GTNRP is a data-efficient approach that combines the strengths of GNNs and Transformers to predict the NR-binding properties of compounds through an optimized meta-learning procedure and deliver robust results valuable to identify potential NR-based drug candidates.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00902-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multi-view feature representation for predicting drugs combination synergy based on ensemble and multi-task attention models 基于集合和多任务注意力模型预测药物组合协同作用的多视角特征表征
IF 7.1 2区 化学
Journal of Cheminformatics Pub Date : 2024-09-27 DOI: 10.1186/s13321-024-00903-3
Samar Monem, Aboul Ella Hassanien, Alaa H. Abdel-Hamid
{"title":"A multi-view feature representation for predicting drugs combination synergy based on ensemble and multi-task attention models","authors":"Samar Monem,&nbsp;Aboul Ella Hassanien,&nbsp;Alaa H. Abdel-Hamid","doi":"10.1186/s13321-024-00903-3","DOIUrl":"10.1186/s13321-024-00903-3","url":null,"abstract":"<div><p>This paper proposes a novel multi-view ensemble predictor model that is designed to address the challenge of determining synergistic drug combinations by predicting both the synergy score value values and synergy class label of drug combinations with cancer cell lines. The proposed methodology involves representing drug features through four distinct views: Simplified Molecular-Input Line-Entry System (SMILES) features, molecular graph features, fingerprint features, and drug-target features. On the other hand, cell line features are captured through four views: gene expression features, copy number features, mutation features, and proteomics features. To prevent overfitting of the model, two techniques are employed. First, each view feature of a drug is paired with each corresponding cell line view and input into a multi-task attention deep learning model. This multi-task model is trained to simultaneously predict both the synergy score value and synergy class label. This process results in sixteen input view features being fed into the multi-task model, producing sixteen prediction values. Subsequently, these prediction values are utilized as inputs for an ensemble model, which outputs the final prediction value. The ‘MVME’ model is assessed using the O’Neil dataset, which includes 38 distinct drugs combined across 39 distinct cancer cell lines to output 22,737 drug combination pairs. For the synergy score value, the proposed model scores a mean square error (MSE) of 206.57, a root mean square error (RMSE) of 14.30, and a Pearson score of 0.76. For the synergy class label, the model scores 0.90 for accuracy, 0.96 for precision, 0.57 for kappa, 0.96 for the area under the ROC curve (ROC-AUC), and 0.88 for the area under the precision-recall curve (PR-AUC).</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00903-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信