Shih-Cheng Li, Pei-Hua Wang, Jheng-Wei Su, Wei-Yin Chiang, Tzu-Lan Yeh, Alex Zhavoronkov, Shih-Hsien Huang, Yen-Chu Lin, Chia-Ho Ou, Chih-Yu Chen
{"title":"Application of the digital annealer unit in optimizing chemical reaction conditions for enhanced production yields","authors":"Shih-Cheng Li, Pei-Hua Wang, Jheng-Wei Su, Wei-Yin Chiang, Tzu-Lan Yeh, Alex Zhavoronkov, Shih-Hsien Huang, Yen-Chu Lin, Chia-Ho Ou, Chih-Yu Chen","doi":"10.1186/s13321-025-01043-y","DOIUrl":null,"url":null,"abstract":"Finding optimal reaction conditions is crucial for chemical synthesis in the pharmaceutical and chemical industries. However, due to the vast chemical space, conducting experiments for all the possible combinations is impractical. Thus, quantitative structure–activity relationship (QSAR) models have been widely used to predict product yields, but evaluating all combinations is still computationally intensive. In this work, we demonstrate the use of Digital Annealer Unit (DAU) can tackle these large-scale optimization problems more efficiently. Two types of models are developed and tested on high-throughput experimentation (HTE) and Reaxys datasets. Our results suggest that the performance of models is comparable to classical machine learning (ML) methods (i.e., Random Forest and Multilayer Perceptron (MLP)), while the inference time of our models requires only seconds with a DAU. In active learning and autonomous reaction condition design, our model shows improvement for reaction yield prediction by incorporating new data, meaning that it can potentially be used in iterative processes. Our method can also accelerate the screening of billions of reaction conditions, achieving speeds millions of times faster than traditional computing units in identifying superior conditions. This study demonstrates the application of DAUs to efficiently optimize chemical reaction conditions, leveraging quadratic unconstrained binary optimization (QUBO) models for accurate yield predictions. The QUBO-based approach exhibits comparable performance to classical machine learning methods while achieving inference times in seconds, significantly accelerating the screening of billions of reaction conditions. By integrating active learning and DAU technology, this research establishes a novel framework for reaction condition optimization, enabling innovative advancements in chemical synthesis.","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"10 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s13321-025-01043-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Finding optimal reaction conditions is crucial for chemical synthesis in the pharmaceutical and chemical industries. However, due to the vast chemical space, conducting experiments for all the possible combinations is impractical. Thus, quantitative structure–activity relationship (QSAR) models have been widely used to predict product yields, but evaluating all combinations is still computationally intensive. In this work, we demonstrate the use of Digital Annealer Unit (DAU) can tackle these large-scale optimization problems more efficiently. Two types of models are developed and tested on high-throughput experimentation (HTE) and Reaxys datasets. Our results suggest that the performance of models is comparable to classical machine learning (ML) methods (i.e., Random Forest and Multilayer Perceptron (MLP)), while the inference time of our models requires only seconds with a DAU. In active learning and autonomous reaction condition design, our model shows improvement for reaction yield prediction by incorporating new data, meaning that it can potentially be used in iterative processes. Our method can also accelerate the screening of billions of reaction conditions, achieving speeds millions of times faster than traditional computing units in identifying superior conditions. This study demonstrates the application of DAUs to efficiently optimize chemical reaction conditions, leveraging quadratic unconstrained binary optimization (QUBO) models for accurate yield predictions. The QUBO-based approach exhibits comparable performance to classical machine learning methods while achieving inference times in seconds, significantly accelerating the screening of billions of reaction conditions. By integrating active learning and DAU technology, this research establishes a novel framework for reaction condition optimization, enabling innovative advancements in chemical synthesis.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.