Peter B. R. Hartog, Fabian Krüger, Samuel Genheden, Igor V. Tetko
{"title":"Using test-time augmentation to investigate explainable AI: inconsistencies between method, model and human intuition","authors":"Peter B. R. Hartog, Fabian Krüger, Samuel Genheden, Igor V. Tetko","doi":"10.1186/s13321-024-00824-1","DOIUrl":"10.1186/s13321-024-00824-1","url":null,"abstract":"<p>Stakeholders of machine learning models desire explainable artificial intelligence (XAI) to produce human-understandable and consistent interpretations. In computational toxicity, augmentation of text-based molecular representations has been used successfully for transfer learning on downstream tasks. Augmentations of molecular representations can also be used at inference to compare differences between multiple representations of the same ground-truth. In this study, we investigate the robustness of eight XAI methods using test-time augmentation for a molecular-representation model in the field of computational toxicity prediction. We report significant differences between explanations for different representations of the same ground-truth, and show that randomized models have similar variance. We hypothesize that text-based molecular representations in this and past research reflect tokenization more than learned parameters. Furthermore, we see a greater variance between in-domain predictions than out-of-domain predictions, indicating XAI measures something other than learned parameters. Finally, we investigate the relative importance given to expert-derived structural alerts and find similar importance given irregardless of applicability domain, randomization and varying training procedures. We therefore caution future research to validate their methods using a similar comparison to human intuition without further investigation.</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00824-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140345547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A general model for predicting enzyme functions based on enzymatic reactions","authors":"Wenjia Qian, Xiaorui Wang, Yu Kang, Peichen Pan, Tingjun Hou, Chang-Yu Hsieh","doi":"10.1186/s13321-024-00827-y","DOIUrl":"10.1186/s13321-024-00827-y","url":null,"abstract":"<div><p>Accurate prediction of the enzyme comission (EC) numbers for chemical reactions is essential for the understanding and manipulation of enzyme functions, biocatalytic processes and biosynthetic planning. A number of machine leanring (ML)-based models have been developed to classify enzymatic reactions, showing great advantages over costly and long-winded experimental verifications. However, the prediction accuracy for most available models trained on the records of chemical reactions without specifying the enzymatic catalysts is rather limited. In this study, we introduced BEC-Pred, a BERT-based multiclassification model, for predicting EC numbers associated with reactions. Leveraging transfer learning, our approach achieves precise forecasting across a wide variety of Enzyme Commission (EC) numbers solely through analysis of the SMILES sequences of substrates and products. BEC-Pred model outperformed other sequence and graph-based ML methods, attaining a higher accuracy of 91.6%, surpassing them by 5.5%, and exhibiting superior F1 scores with improvements of 6.6% and 6.0%, respectively. The enhanced performance highlights the potential of BEC-Pred to serve as a reliable foundational tool to accelerate the cutting-edge research in synthetic biology and drug metabolism. Moreover, we discussed a few examples on how BEC-Pred could accurately predict the enzymatic classification for the Novozym 435-induced hydrolysis and lipase efficient catalytic synthesis. We anticipate that BEC-Pred will have a positive impact on the progression of enzymatic research.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00827-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140331461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maarten R. Dobbelaere, István Lengyel, Christian V. Stevens, Kevin M. Van Geem
{"title":"Rxn-INSIGHT: fast chemical reaction analysis using bond-electron matrices","authors":"Maarten R. Dobbelaere, István Lengyel, Christian V. Stevens, Kevin M. Van Geem","doi":"10.1186/s13321-024-00834-z","DOIUrl":"10.1186/s13321-024-00834-z","url":null,"abstract":"<div><p>The challenge of devising pathways for organic synthesis remains a central issue in the field of medicinal chemistry. Over the span of six decades, computer-aided synthesis planning has given rise to a plethora of potent tools for formulating synthetic routes. Nevertheless, a significant expert task still looms: determining the appropriate solvent, catalyst, and reagents when provided with a set of reactants to achieve and optimize the desired product for a specific step in the synthesis process. Typically, chemists identify key functional groups and rings that exert crucial influences at the reaction center, classify reactions into categories, and may assign them names. This research introduces Rxn-INSIGHT, an open-source algorithm based on the bond-electron matrix approach, with the purpose of automating this endeavor. Rxn-INSIGHT not only streamlines the process but also facilitates extensive querying of reaction databases, effectively replicating the thought processes of an organic chemist. The core functions of the algorithm encompass the classification and naming of reactions, extraction of functional groups, rings, and scaffolds from the involved chemical entities. The provision of reaction condition recommendations based on the similarity and prevalence of reactions eventually arises as a side application. The performance of our rule-based model has been rigorously assessed against a carefully curated benchmark dataset, exhibiting an accuracy rate exceeding 90% in reaction classification and surpassing 95% in reaction naming. Notably, it has been discerned that a pivotal factor in selecting analogous reactions lies in the analysis of ring structures participating in the reactions. An examination of ring structures within the USPTO chemical reaction database reveals that with just 35 unique rings, a remarkable 75% of all rings found in nearly 1 million products can be encompassed. Furthermore, Rxn-INSIGHT is proficient in suggesting appropriate choices for solvents, catalysts, and reagents in entirely novel reactions, all within the span of a second, utilizing nothing more than an everyday laptop.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00834-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140326216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DGet! An open source deuteration calculator for mass spectrometry data","authors":"Thomas E. Lockwood, Alexander Angeloski","doi":"10.1186/s13321-024-00828-x","DOIUrl":"10.1186/s13321-024-00828-x","url":null,"abstract":"<div><p>DGet! is an open-source analysis package written in Python for calculating the degree of deuterium enrichment in isotopically labelled molecules using mass spectrometric data. The nuclear properties of deuterium make it a valuable tracer in metabolic studies and an excellent contrast agent in nuclear spectroscopies. Determination of molecular deuteration levels is typically performed using mass spectrometry, however software options to perform these calculations are scarce. The in-house scripts and spreadsheets currently used rarely account for isotopic interferences from <sup>13</sup>C or multi-isotopic elements that impact deuteration calculations. DGet! removes isotopic interferences using de-convolution and both the isotopological makeup and overall deuteration level can be accurately recovered. The software is available as command line and web applications that take a molecular formula and mass spectrometry data and output a graphical representation of the degree of deuteration as well as the distribution of partially deuterated analogues. These applications are designed to be easy to use and enable superior characterisation of deuterated molecules for users of all levels of expertise, without the limitations of techniques currently used by the majority of deuteration laboratories and researchers.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00828-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140310429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Davide Boldini, Davide Ballabio, Viviana Consonni, Roberto Todeschini, Francesca Grisoni, Stephan A. Sieber
{"title":"Effectiveness of molecular fingerprints for exploring the chemical space of natural products","authors":"Davide Boldini, Davide Ballabio, Viviana Consonni, Roberto Todeschini, Francesca Grisoni, Stephan A. Sieber","doi":"10.1186/s13321-024-00830-3","DOIUrl":"10.1186/s13321-024-00830-3","url":null,"abstract":"<div><p>Natural products are a diverse class of compounds with promising biological properties, such as high potency and excellent selectivity. However, they have different structural motifs than typical drug-like compounds, <i>e.g.</i>, a wider range of molecular weight, multiple stereocenters and higher fraction of <i>sp</i><sup><i>3</i></sup>-hybridized carbons. This makes the encoding of natural products via molecular fingerprints difficult, thus restricting their use in cheminformatics studies. To tackle this issue, we explored over 30 years of research to systematically evaluate which molecular fingerprint provides the best performance on the natural product chemical space. We considered 20 molecular fingerprints from four different sources, which we then benchmarked on over 100,000 unique natural products from the COCONUT (COlleCtion of Open Natural prodUcTs) and CMNPD (Comprehensive Marine Natural Products Database) databases. Our analysis focused on the correlation between different fingerprints and their classification performance on 12 bioactivity prediction datasets. Our results show that different encodings can provide fundamentally different views of the natural product chemical space, leading to substantial differences in pairwise similarity and performance. While Extended Connectivity Fingerprints are the de-facto option to encoding drug-like compounds, other fingerprints resulted to match or outperform them for bioactivity prediction of natural products. These results highlight the need to evaluate multiple fingerprinting algorithms for optimal performance and suggest new areas of research. Finally, we provide an open-source Python package for computing all molecular fingerprints considered in the study, as well as data and scripts necessary to reproduce the results, at https://github.com/dahvida/NP_Fingerprints.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00830-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140209708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matteo Krüger, Ashmi Mishra, Peter Spichtinger, Ulrich Pöschl, Thomas Berkemeier
{"title":"A numerical compass for experiment design in chemical kinetics and molecular property estimation","authors":"Matteo Krüger, Ashmi Mishra, Peter Spichtinger, Ulrich Pöschl, Thomas Berkemeier","doi":"10.1186/s13321-024-00825-0","DOIUrl":"10.1186/s13321-024-00825-0","url":null,"abstract":"<div><p>Kinetic process models are widely applied in science and engineering, including atmospheric, physiological and technical chemistry, reactor design, or process optimization. These models rely on numerous kinetic parameters such as reaction rate, diffusion or partitioning coefficients. Determining these properties by experiments can be challenging, especially for multiphase systems, and researchers often face the task of intuitively selecting experimental conditions to obtain insightful results. We developed a numerical compass (NC) method that integrates computational models, global optimization, ensemble methods, and machine learning to identify experimental conditions with the greatest potential to constrain model parameters. The approach is based on the quantification of model output variance in an ensemble of solutions that agree with experimental data. The utility of the NC method is demonstrated for the parameters of a multi-layer model describing the heterogeneous ozonolysis of oleic acid aerosols. We show how neural network surrogate models of the multiphase chemical reaction system can be used to accelerate the application of the NC for a comprehensive mapping and analysis of experimental conditions. The NC can also be applied for uncertainty quantification of quantitative structure–activity relationship (QSAR) models. We show that the uncertainty calculated for molecules that are used to extend training data correlates with the reduction of QSAR model error. The code is openly available as the Julia package <i>KineticCompass</i>.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00825-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140192075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lingling Shen, Jian Fang, Lulu Liu, Fei Yang, Jeremy L. Jenkins, Peter S. Kutchukian, He Wang
{"title":"Pocket Crafter: a 3D generative modeling based workflow for the rapid generation of hit molecules in drug discovery","authors":"Lingling Shen, Jian Fang, Lulu Liu, Fei Yang, Jeremy L. Jenkins, Peter S. Kutchukian, He Wang","doi":"10.1186/s13321-024-00829-w","DOIUrl":"10.1186/s13321-024-00829-w","url":null,"abstract":"<div><p>We present a user-friendly molecular generative pipeline called Pocket Crafter, specifically designed to facilitate hit finding activity in the drug discovery process. This workflow utilized a three-dimensional (3D) generative modeling method Pocket2Mol, for the de novo design of molecules in spatial perspective for the targeted protein structures, followed by filters for chemical-physical properties and drug-likeness, structure–activity relationship analysis, and clustering to generate top virtual hit scaffolds. In our WDR5 case study, we acquired a focused set of 2029 compounds after a targeted searching within Novartis archived library based on the virtual scaffolds. Subsequently, we experimentally profiled these compounds, resulting in a novel chemical scaffold series that demonstrated activity in biochemical and biophysical assays. Pocket Crafter successfully prototyped an effective end-to-end 3D generative chemistry-based workflow for the exploration of new chemical scaffolds, which represents a promising approach in early drug discovery for hit identification.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00829-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140183432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alex K. Chew, Matthew Sender, Zachary Kaplan, Anand Chandrasekaran, Jackson Chief Elk, Andrea R. Browning, H. Shaun Kwak, Mathew D. Halls, Mohammad Atif Faiz Afzal
{"title":"Advancing material property prediction: using physics-informed machine learning models for viscosity","authors":"Alex K. Chew, Matthew Sender, Zachary Kaplan, Anand Chandrasekaran, Jackson Chief Elk, Andrea R. Browning, H. Shaun Kwak, Mathew D. Halls, Mohammad Atif Faiz Afzal","doi":"10.1186/s13321-024-00820-5","DOIUrl":"10.1186/s13321-024-00820-5","url":null,"abstract":"<div><p>In materials science, accurately computing properties like viscosity, melting point, and glass transition temperatures solely through physics-based models is challenging. Data-driven machine learning (ML) also poses challenges in constructing ML models, especially in the material science domain where data is limited. To address this, we integrate physics-informed descriptors from molecular dynamics (MD) simulations to enhance the accuracy and interpretability of ML models. Our current study focuses on accurately predicting viscosity in liquid systems using MD descriptors. In this work, we curated a comprehensive dataset of over 4000 small organic molecules’ viscosities from scientific literature, publications, and online databases. This dataset enabled us to develop quantitative structure–property relationships (QSPR) consisting of descriptor-based and graph neural network models to predict temperature-dependent viscosities for a wide range of viscosities. The QSPR models reveal that including MD descriptors improves the prediction of experimental viscosities, particularly at the small data set scale of fewer than a thousand data points. Furthermore, feature importance tools reveal that intermolecular interactions captured by MD descriptors are most important for viscosity predictions. Finally, the QSPR models can accurately capture the inverse relationship between viscosity and temperature for six battery-relevant solvents, some of which were not included in the original data set. Our research highlights the effectiveness of incorporating MD descriptors into QSPR models, which leads to improved accuracy for properties that are difficult to predict when using physics-based models alone or when limited data is available.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00820-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140123854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna Carbery, Martin Buttenschoen, Rachael Skyner, Frank von Delft, Charlotte M. Deane
{"title":"Learnt representations of proteins can be used for accurate prediction of small molecule binding sites on experimentally determined and predicted protein structures","authors":"Anna Carbery, Martin Buttenschoen, Rachael Skyner, Frank von Delft, Charlotte M. Deane","doi":"10.1186/s13321-024-00821-4","DOIUrl":"10.1186/s13321-024-00821-4","url":null,"abstract":"<div><p>Protein-ligand binding site prediction is a useful tool for understanding the functional behaviour and potential drug-target interactions of a novel protein of interest. However, most binding site prediction methods are tested by providing crystallised ligand-bound (holo) structures as input. This testing regime is insufficient to understand the performance on novel protein targets where experimental structures are not available. An alternative option is to provide computationally predicted protein structures, but this is not commonly tested. However, due to the training data used, computationally-predicted protein structures tend to be extremely accurate, and are often biased toward a holo conformation. In this study we describe and benchmark IF-SitePred, a protein-ligand binding site prediction method which is based on the labelling of ESM-IF1 protein language model embeddings combined with point cloud annotation and clustering. We show that not only is IF-SitePred competitive with state-of-the-art methods when predicting binding sites on experimental structures, but it performs better on proxies for novel proteins where low accuracy has been simulated by molecular dynamics. Finally, IF-SitePred outperforms other methods if ensembles of predicted protein structures are generated.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00821-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140130520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new workflow for the effective curation of membrane permeability data from open ADME information","authors":"Tsuyoshi Esaki, Tomoki Yonezawa, Kazuyoshi Ikeda","doi":"10.1186/s13321-024-00826-z","DOIUrl":"10.1186/s13321-024-00826-z","url":null,"abstract":"<div><p>Membrane permeability is an in vitro parameter that represents the apparent permeability (Papp) of a compound, and is a key absorption, distribution, metabolism, and excretion parameter in drug development. Although the Caco-2 cell lines are the most used cell lines to measure Papp, other cell lines, such as the Madin-Darby Canine Kidney (MDCK), LLC-Pig Kidney 1 (LLC-PK1), and Ralph Russ Canine Kidney (RRCK) cell lines, can also be used to estimate Papp. Therefore, constructing in silico models for Papp estimation using the MDCK, LLC-PK1, and RRCK cell lines requires collecting extensive amounts of in vitro Papp data. An open database offers extensive measurements of various compounds covering a vast chemical space; however, concerns were reported on the use of data published in open databases without the appropriate accuracy and quality checks. Ensuring the quality of datasets for training in silico models is critical because artificial intelligence (AI, including deep learning) was used to develop models to predict various pharmacokinetic properties, and data quality affects the performance of these models. Hence, careful curation of the collected data is imperative. Herein, we developed a new workflow that supports automatic curation of Papp data measured in the MDCK, LLC-PK1, and RRCK cell lines collected from ChEMBL using KNIME. The workflow consisted of four main phases. Data were extracted from ChEMBL and filtered to identify the target protocols. A total of 1661 high-quality entries were retained after checking 436 articles. The workflow is freely available, can be updated, and has high reusability. Our study provides a novel approach for data quality analysis and accelerates the development of helpful in silico models for effective drug discovery. Scientific Contribution: The cost of building highly accurate predictive models can be significantly reduced by automating the collection of reliable measurement data. Our tool reduces the time and effort required for data collection and will enable researchers to focus on constructing high-performance in silico models for other types of analysis. To the best of our knowledge, no such tool is available in the literature.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00826-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140118431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}