使用变压器结构的生物降解途径的预测建模

IF 5.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Liam Brydon, Kunyang Zhang, Gillian Dobbie, Katerina Taškova, Jörg Simon Wicker
{"title":"使用变压器结构的生物降解途径的预测建模","authors":"Liam Brydon,&nbsp;Kunyang Zhang,&nbsp;Gillian Dobbie,&nbsp;Katerina Taškova,&nbsp;Jörg Simon Wicker","doi":"10.1186/s13321-025-00969-7","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, the integration of machine learning techniques into chemical reaction product prediction has opened new avenues for understanding and predicting the behaviour of chemical substances. The necessity for such predictive methods stems from the growing regulatory and social awareness of the environmental consequences associated with the persistence and accumulation of chemical residues. Traditional biodegradation prediction methods rely on expert knowledge to perform predictions. However, creating this expert knowledge is becoming increasingly prohibitive due to the complexity and diversity of newer datasets, leaving existing methods unable to perform predictions on these datasets. We formulate the product prediction problem as a sequence-to-sequence generation task and take inspiration from natural language processing and other reaction prediction tasks. In doing so, we reduce the need for the expensive manual creation of expert-based rules. </p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-00969-7","citationCount":"0","resultStr":"{\"title\":\"Predictive modeling of biodegradation pathways using transformer architectures\",\"authors\":\"Liam Brydon,&nbsp;Kunyang Zhang,&nbsp;Gillian Dobbie,&nbsp;Katerina Taškova,&nbsp;Jörg Simon Wicker\",\"doi\":\"10.1186/s13321-025-00969-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, the integration of machine learning techniques into chemical reaction product prediction has opened new avenues for understanding and predicting the behaviour of chemical substances. The necessity for such predictive methods stems from the growing regulatory and social awareness of the environmental consequences associated with the persistence and accumulation of chemical residues. Traditional biodegradation prediction methods rely on expert knowledge to perform predictions. However, creating this expert knowledge is becoming increasingly prohibitive due to the complexity and diversity of newer datasets, leaving existing methods unable to perform predictions on these datasets. We formulate the product prediction problem as a sequence-to-sequence generation task and take inspiration from natural language processing and other reaction prediction tasks. In doing so, we reduce the need for the expensive manual creation of expert-based rules. </p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-00969-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-00969-7\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-00969-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,将机器学习技术整合到化学反应产物预测中,为理解和预测化学物质的行为开辟了新的途径。之所以需要这种预测方法,是因为管制和社会日益认识到与化学残留物的持续存在和积累有关的环境后果。传统的生物降解预测方法依靠专家知识来进行预测。然而,由于新数据集的复杂性和多样性,创建这种专业知识变得越来越困难,使得现有方法无法对这些数据集进行预测。我们将产品预测问题表述为序列到序列的生成任务,并从自然语言处理和其他反应预测任务中获得灵感。通过这样做,我们减少了手工创建基于专家的规则的昂贵需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive modeling of biodegradation pathways using transformer architectures

In recent years, the integration of machine learning techniques into chemical reaction product prediction has opened new avenues for understanding and predicting the behaviour of chemical substances. The necessity for such predictive methods stems from the growing regulatory and social awareness of the environmental consequences associated with the persistence and accumulation of chemical residues. Traditional biodegradation prediction methods rely on expert knowledge to perform predictions. However, creating this expert knowledge is becoming increasingly prohibitive due to the complexity and diversity of newer datasets, leaving existing methods unable to perform predictions on these datasets. We formulate the product prediction problem as a sequence-to-sequence generation task and take inspiration from natural language processing and other reaction prediction tasks. In doing so, we reduce the need for the expensive manual creation of expert-based rules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信