ROASMI: accelerating small molecule identification by repurposing retention data

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fang-Yuan Sun, Ying-Hao Yin, Hui-Jun Liu, Lu-Na Shen, Xiu-Lin Kang, Gui-Zhong Xin, Li-Fang Liu, Jia-Yi Zheng
{"title":"ROASMI: accelerating small molecule identification by repurposing retention data","authors":"Fang-Yuan Sun,&nbsp;Ying-Hao Yin,&nbsp;Hui-Jun Liu,&nbsp;Lu-Na Shen,&nbsp;Xiu-Lin Kang,&nbsp;Gui-Zhong Xin,&nbsp;Li-Fang Liu,&nbsp;Jia-Yi Zheng","doi":"10.1186/s13321-025-00968-8","DOIUrl":null,"url":null,"abstract":"<div><p>The limited replicability of retention data hinders its application in untargeted metabolomics for small molecule identification. While retention order models hold promise in addressing this issue, their predictive reliability is limited by uncertain generalizability. Here, we present the ROASMI model, which enables reliable prediction of retention order within a well-defined application domain by coupling data-driven molecular representation and mechanistic insights. The generalizability of ROASMI is proven by 71 independent reversed-phase liquid chromatography (RPLC) datasets. The application of ROASMI to four real-world datasets demonstrates its advantages in distinguishing coexisting isomers with similar fragmentation patterns and in annotating detection peaks without informative spectra. ROASMI is flexible enough to be retrained with user-defined reference sets and is compatible with other MS/MS scorers, making further improvements in small-molecule identification. </p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-00968-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-00968-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The limited replicability of retention data hinders its application in untargeted metabolomics for small molecule identification. While retention order models hold promise in addressing this issue, their predictive reliability is limited by uncertain generalizability. Here, we present the ROASMI model, which enables reliable prediction of retention order within a well-defined application domain by coupling data-driven molecular representation and mechanistic insights. The generalizability of ROASMI is proven by 71 independent reversed-phase liquid chromatography (RPLC) datasets. The application of ROASMI to four real-world datasets demonstrates its advantages in distinguishing coexisting isomers with similar fragmentation patterns and in annotating detection peaks without informative spectra. ROASMI is flexible enough to be retrained with user-defined reference sets and is compatible with other MS/MS scorers, making further improvements in small-molecule identification. 

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信