ROASMI:通过重新利用保留数据加速小分子鉴定

IF 5.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fang-Yuan Sun, Ying-Hao Yin, Hui-Jun Liu, Lu-Na Shen, Xiu-Lin Kang, Gui-Zhong Xin, Li-Fang Liu, Jia-Yi Zheng
{"title":"ROASMI:通过重新利用保留数据加速小分子鉴定","authors":"Fang-Yuan Sun,&nbsp;Ying-Hao Yin,&nbsp;Hui-Jun Liu,&nbsp;Lu-Na Shen,&nbsp;Xiu-Lin Kang,&nbsp;Gui-Zhong Xin,&nbsp;Li-Fang Liu,&nbsp;Jia-Yi Zheng","doi":"10.1186/s13321-025-00968-8","DOIUrl":null,"url":null,"abstract":"<div><p>The limited replicability of retention data hinders its application in untargeted metabolomics for small molecule identification. While retention order models hold promise in addressing this issue, their predictive reliability is limited by uncertain generalizability. Here, we present the ROASMI model, which enables reliable prediction of retention order within a well-defined application domain by coupling data-driven molecular representation and mechanistic insights. The generalizability of ROASMI is proven by 71 independent reversed-phase liquid chromatography (RPLC) datasets. The application of ROASMI to four real-world datasets demonstrates its advantages in distinguishing coexisting isomers with similar fragmentation patterns and in annotating detection peaks without informative spectra. ROASMI is flexible enough to be retrained with user-defined reference sets and is compatible with other MS/MS scorers, making further improvements in small-molecule identification. </p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-00968-8","citationCount":"0","resultStr":"{\"title\":\"ROASMI: accelerating small molecule identification by repurposing retention data\",\"authors\":\"Fang-Yuan Sun,&nbsp;Ying-Hao Yin,&nbsp;Hui-Jun Liu,&nbsp;Lu-Na Shen,&nbsp;Xiu-Lin Kang,&nbsp;Gui-Zhong Xin,&nbsp;Li-Fang Liu,&nbsp;Jia-Yi Zheng\",\"doi\":\"10.1186/s13321-025-00968-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The limited replicability of retention data hinders its application in untargeted metabolomics for small molecule identification. While retention order models hold promise in addressing this issue, their predictive reliability is limited by uncertain generalizability. Here, we present the ROASMI model, which enables reliable prediction of retention order within a well-defined application domain by coupling data-driven molecular representation and mechanistic insights. The generalizability of ROASMI is proven by 71 independent reversed-phase liquid chromatography (RPLC) datasets. The application of ROASMI to four real-world datasets demonstrates its advantages in distinguishing coexisting isomers with similar fragmentation patterns and in annotating detection peaks without informative spectra. ROASMI is flexible enough to be retrained with user-defined reference sets and is compatible with other MS/MS scorers, making further improvements in small-molecule identification. </p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-00968-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-00968-8\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-00968-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

保留数据的有限可复制性阻碍了其在非靶向代谢组学小分子鉴定中的应用。虽然保留顺序模型有望解决这一问题,但其预测可靠性受到不确定泛化性的限制。在这里,我们提出了ROASMI模型,该模型通过耦合数据驱动的分子表示和机制见解,能够在定义良好的应用领域内可靠地预测保留顺序。71个独立的反相液相色谱(RPLC)数据集证明了ROASMI的通用性。ROASMI在四个真实数据集上的应用表明,它在区分具有相似碎片模式的共存异构体和在没有信息光谱的情况下注释检测峰方面具有优势。ROASMI足够灵活,可以使用用户定义的参考集进行再训练,并与其他MS/MS评分器兼容,进一步改进小分子鉴定。我们的工作发现了RPLC系统中缓冲液pH对保留序列可复制性的依赖。基于这种机制的洞察力,我们构建了一个名为ROASMI的面向一般化的保留顺序预测模型,该模型能够在具有不同色谱和化学空间的异构数据集上提供可靠的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ROASMI: accelerating small molecule identification by repurposing retention data

The limited replicability of retention data hinders its application in untargeted metabolomics for small molecule identification. While retention order models hold promise in addressing this issue, their predictive reliability is limited by uncertain generalizability. Here, we present the ROASMI model, which enables reliable prediction of retention order within a well-defined application domain by coupling data-driven molecular representation and mechanistic insights. The generalizability of ROASMI is proven by 71 independent reversed-phase liquid chromatography (RPLC) datasets. The application of ROASMI to four real-world datasets demonstrates its advantages in distinguishing coexisting isomers with similar fragmentation patterns and in annotating detection peaks without informative spectra. ROASMI is flexible enough to be retrained with user-defined reference sets and is compatible with other MS/MS scorers, making further improvements in small-molecule identification. 

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信