Florian Rottach, Sebastian Schieferdecker, Carsten Eickhoff
{"title":"The topology of molecular representations and its influence on machine learning performance","authors":"Florian Rottach, Sebastian Schieferdecker, Carsten Eickhoff","doi":"10.1186/s13321-025-01045-w","DOIUrl":null,"url":null,"abstract":"<div><p>Advancements in cheminformatics have led to numerous methods for encoding molecules numerically. The choice of molecular representation impacts the accuracy and generalizability of learning algorithms applied to chemical datasets. Designing and selecting the appropriate representation often lacks a systematic approach and follows computationally exhaustive empirical testing. Moreover, research has shown that deep learning models do not substantially outperform traditional approaches across many tasks with no clear explanation for this shortfall. In this work, we present TopoLearn, a model that predicts the effectiveness of representations on datasets based on the topological characteristics of the corresponding feature space. Using interpretability techniques, we find that persistent homology descriptors are linked with the error metrics of trained machine learning models, offering a new method to better understand and select molecular representations.</p><p><b>Scientific contribution</b> Our research is the first to establish an empirical connection between the topology of feature spaces and the machine learning performance of molecular representations. In addition, we facilitate future research endeavors by providing open access to our developed model.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01045-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01045-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Advancements in cheminformatics have led to numerous methods for encoding molecules numerically. The choice of molecular representation impacts the accuracy and generalizability of learning algorithms applied to chemical datasets. Designing and selecting the appropriate representation often lacks a systematic approach and follows computationally exhaustive empirical testing. Moreover, research has shown that deep learning models do not substantially outperform traditional approaches across many tasks with no clear explanation for this shortfall. In this work, we present TopoLearn, a model that predicts the effectiveness of representations on datasets based on the topological characteristics of the corresponding feature space. Using interpretability techniques, we find that persistent homology descriptors are linked with the error metrics of trained machine learning models, offering a new method to better understand and select molecular representations.
Scientific contribution Our research is the first to establish an empirical connection between the topology of feature spaces and the machine learning performance of molecular representations. In addition, we facilitate future research endeavors by providing open access to our developed model.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.