Xiaobo Lin, Zhaoqian Su, Yunchao Lance Liu, Jingxian Liu, Xiaohan Kuang, Peter T. Cummings, Jesse Spencer-Smith, Jens Meiler
{"title":"SuperMetal:生成式AI框架,用于快速精确地预测蛋白质中的金属离子位置","authors":"Xiaobo Lin, Zhaoqian Su, Yunchao Lance Liu, Jingxian Liu, Xiaohan Kuang, Peter T. Cummings, Jesse Spencer-Smith, Jens Meiler","doi":"10.1186/s13321-025-01038-9","DOIUrl":null,"url":null,"abstract":"Metal ions, as abundant and vital cofactors in numerous proteins, are crucial for enzymatic activities and protein interactions. Given their pivotal role and catalytic efficiency, accurately and efficiently identifying metal-binding sites is fundamental to elucidating their biological functions and has significant implications for protein engineering and drug discovery. To address this challenge, we present SuperMetal, a generative AI framework that leverages a score-based diffusion model coupled with a confidence model to predict metal-binding sites in proteins with high precision and efficiency. Using zinc ions as an example, SuperMetal outperforms existing state-of-the-art models, achieving a precision of 94 % and coverage of 90 %, with zinc ions localization within 0.52 ± 0.55 Å of experimentally determined positions, thus marking a substantial advance in metal-binding site prediction. Furthermore, SuperMetal demonstrates rapid prediction capabilities (under 10 s for proteins with $$\\sim$$ 2000 residues) and remains minimally affected by increases in protein size. Notably, SuperMetal does not require prior knowledge of the number of metal ions—unlike AlphaFold 3, which depends on this information. Additionally, SuperMetal can be readily adapted to other metal ions or repurposed as a probe framework to identify other types of binding sites, such as protein-binding pockets. Scientific contribution SuperMetal introduces a diffusion-based, SE(3)-equivariant generative model that places metal ions in proteins with 94 % precision, 90 % coverage, and sub-ångström (0.52 Å) accuracy in under 10 s, surpassing current methods and accelerating metal-aware protein engineering and drug discovery.","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"10 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SuperMetal: a generative AI framework for rapid and precise metal ion location prediction in proteins\",\"authors\":\"Xiaobo Lin, Zhaoqian Su, Yunchao Lance Liu, Jingxian Liu, Xiaohan Kuang, Peter T. Cummings, Jesse Spencer-Smith, Jens Meiler\",\"doi\":\"10.1186/s13321-025-01038-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal ions, as abundant and vital cofactors in numerous proteins, are crucial for enzymatic activities and protein interactions. Given their pivotal role and catalytic efficiency, accurately and efficiently identifying metal-binding sites is fundamental to elucidating their biological functions and has significant implications for protein engineering and drug discovery. To address this challenge, we present SuperMetal, a generative AI framework that leverages a score-based diffusion model coupled with a confidence model to predict metal-binding sites in proteins with high precision and efficiency. Using zinc ions as an example, SuperMetal outperforms existing state-of-the-art models, achieving a precision of 94 % and coverage of 90 %, with zinc ions localization within 0.52 ± 0.55 Å of experimentally determined positions, thus marking a substantial advance in metal-binding site prediction. Furthermore, SuperMetal demonstrates rapid prediction capabilities (under 10 s for proteins with $$\\\\sim$$ 2000 residues) and remains minimally affected by increases in protein size. Notably, SuperMetal does not require prior knowledge of the number of metal ions—unlike AlphaFold 3, which depends on this information. Additionally, SuperMetal can be readily adapted to other metal ions or repurposed as a probe framework to identify other types of binding sites, such as protein-binding pockets. Scientific contribution SuperMetal introduces a diffusion-based, SE(3)-equivariant generative model that places metal ions in proteins with 94 % precision, 90 % coverage, and sub-ångström (0.52 Å) accuracy in under 10 s, surpassing current methods and accelerating metal-aware protein engineering and drug discovery.\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1186/s13321-025-01038-9\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s13321-025-01038-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
金属离子作为多种蛋白质中丰富而重要的辅助因子,对酶活性和蛋白质相互作用至关重要。鉴于它们的关键作用和催化效率,准确有效地识别金属结合位点是阐明其生物学功能的基础,对蛋白质工程和药物发现具有重要意义。为了应对这一挑战,我们提出了SuperMetal,这是一个生成式人工智能框架,它利用基于分数的扩散模型和置信度模型来高精度高效地预测蛋白质中的金属结合位点。以锌离子为例,SuperMetal优于现有的最先进的模型,达到了94的精度 % and coverage of 90 %, with zinc ions localization within 0.52 ± 0.55 Å of experimentally determined positions, thus marking a substantial advance in metal-binding site prediction. Furthermore, SuperMetal demonstrates rapid prediction capabilities (under 10 s for proteins with $$\sim$$ 2000 residues) and remains minimally affected by increases in protein size. Notably, SuperMetal does not require prior knowledge of the number of metal ions—unlike AlphaFold 3, which depends on this information. Additionally, SuperMetal can be readily adapted to other metal ions or repurposed as a probe framework to identify other types of binding sites, such as protein-binding pockets. Scientific contribution SuperMetal introduces a diffusion-based, SE(3)-equivariant generative model that places metal ions in proteins with 94 % precision, 90 % coverage, and sub-ångström (0.52 Å) accuracy in under 10 s, surpassing current methods and accelerating metal-aware protein engineering and drug discovery.
SuperMetal: a generative AI framework for rapid and precise metal ion location prediction in proteins
Metal ions, as abundant and vital cofactors in numerous proteins, are crucial for enzymatic activities and protein interactions. Given their pivotal role and catalytic efficiency, accurately and efficiently identifying metal-binding sites is fundamental to elucidating their biological functions and has significant implications for protein engineering and drug discovery. To address this challenge, we present SuperMetal, a generative AI framework that leverages a score-based diffusion model coupled with a confidence model to predict metal-binding sites in proteins with high precision and efficiency. Using zinc ions as an example, SuperMetal outperforms existing state-of-the-art models, achieving a precision of 94 % and coverage of 90 %, with zinc ions localization within 0.52 ± 0.55 Å of experimentally determined positions, thus marking a substantial advance in metal-binding site prediction. Furthermore, SuperMetal demonstrates rapid prediction capabilities (under 10 s for proteins with $$\sim$$ 2000 residues) and remains minimally affected by increases in protein size. Notably, SuperMetal does not require prior knowledge of the number of metal ions—unlike AlphaFold 3, which depends on this information. Additionally, SuperMetal can be readily adapted to other metal ions or repurposed as a probe framework to identify other types of binding sites, such as protein-binding pockets. Scientific contribution SuperMetal introduces a diffusion-based, SE(3)-equivariant generative model that places metal ions in proteins with 94 % precision, 90 % coverage, and sub-ångström (0.52 Å) accuracy in under 10 s, surpassing current methods and accelerating metal-aware protein engineering and drug discovery.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.